Linearized Methods for Tensor Complementarity Problems

被引:17
|
作者
Guan, Hong-Bo [1 ,2 ]
Li, Dong-Hui [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Inst Technol, Sch Math Phys & Energy Engn, Hengyang 421002, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
M-tensor complementarity problem; Linearized method; Lower-dimensional method; Monotone convergence; POSITIVE-DEFINITE;
D O I
10.1007/s10957-019-01627-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we first propose a linearized method for solving the tensor complementarity problem. The subproblems of the method can be solved by solving linear complementarity problems with a constant matrix. We show that if the initial point is appropriately chosen, then the generated sequence of iterates converges to a solution of the problem monotonically. We then propose a lower-dimensional equation method and establish its monotone convergence. The subproblems of the method are lower-dimensional systems of linear equations. At last, we do numerical experiments to test the proposed methods. The results show the efficiency of the proposed methods.
引用
收藏
页码:972 / 987
页数:16
相关论文
共 50 条
  • [41] Tensor Z-eigenvalue complementarity problems
    Zeng, Meilan
    Computational Optimization and Applications, 2021, 78 (02): : 559 - 573
  • [42] Positive definite and Gram tensor complementarity problems
    Balaji, R.
    Palpandi, K.
    OPTIMIZATION LETTERS, 2018, 12 (03) : 639 - 648
  • [43] Exceptionally regular tensors and tensor complementarity problems
    Wang, Yong
    Huang, Zheng-Hai
    Bai, Xue-Li
    OPTIMIZATION METHODS & SOFTWARE, 2016, 31 (04): : 815 - 828
  • [44] Structured tensor tuples to polynomial complementarity problems
    Tong-tong Shang
    Guo-ji Tang
    Journal of Global Optimization, 2023, 86 : 867 - 883
  • [45] Tensor complementarity problems: the GUS-property and an algorithm
    Liu, Dongdong
    Li, Wen
    Vong, Seak-Weng
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (09): : 1726 - 1749
  • [46] Tensor Complementarity Problems-Part III: Applications
    Huang, Zheng-Hai
    Qi, Liqun
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (03) : 771 - 791
  • [47] The sparsest solutions to Z-tensor complementarity problems
    Luo, Ziyan
    Qi, Liqun
    Xiu, Naihua
    OPTIMIZATION LETTERS, 2017, 11 (03) : 471 - 482
  • [48] Acceptable Solutions and Backward Errors for Tensor Complementarity Problems
    Du, Shouqiang
    Ding, Weiyang
    Wei, Yimin
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 188 (01) : 260 - 276
  • [49] Higher-degree tensor eigenvalue complementarity problems
    Zhao, Ruixue
    Fan, Jinyan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2020, 75 (03) : 799 - 816
  • [50] Generalized Tensor Complementarity Problems Over a Polyhedral Cone
    Ling, Liyun
    Ling, Chen
    He, Hongjin
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2020, 37 (04)