Linearized Methods for Tensor Complementarity Problems

被引:17
|
作者
Guan, Hong-Bo [1 ,2 ]
Li, Dong-Hui [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Inst Technol, Sch Math Phys & Energy Engn, Hengyang 421002, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
M-tensor complementarity problem; Linearized method; Lower-dimensional method; Monotone convergence; POSITIVE-DEFINITE;
D O I
10.1007/s10957-019-01627-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we first propose a linearized method for solving the tensor complementarity problem. The subproblems of the method can be solved by solving linear complementarity problems with a constant matrix. We show that if the initial point is appropriately chosen, then the generated sequence of iterates converges to a solution of the problem monotonically. We then propose a lower-dimensional equation method and establish its monotone convergence. The subproblems of the method are lower-dimensional systems of linear equations. At last, we do numerical experiments to test the proposed methods. The results show the efficiency of the proposed methods.
引用
收藏
页码:972 / 987
页数:16
相关论文
共 50 条
  • [31] Positive definite and Gram tensor complementarity problems
    R. Balaji
    K. Palpandi
    Optimization Letters, 2018, 12 : 639 - 648
  • [32] An Iterative Method for Horizontal Tensor Complementarity Problems
    Sun, Chen
    Wang, Yong
    Huang, Zheng-Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (02) : 854 - 877
  • [33] Tensor Z-eigenvalue complementarity problems
    Zeng, Meilan
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2021, 78 (02) : 559 - 573
  • [34] Complementarity problems over a hypermatrix (tensor) set
    Tawhid, Mohamed A.
    Rahmati, Saeed
    OPTIMIZATION LETTERS, 2018, 12 (06) : 1443 - 1454
  • [35] Global Uniqueness and Solvability for Tensor Complementarity Problems
    Bai, Xue-Li
    Huang, Zheng-Hai
    Wang, Yong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 170 (01) : 72 - 84
  • [36] Column sufficient tensors and tensor complementarity problems
    Chen, Haibin
    Qi, Liqun
    Song, Yisheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2018, 13 (02) : 255 - 276
  • [37] Solvability of Two Classes of Tensor Complementarity Problems
    Xu, Yang
    Gu, Weizhe
    Huang, He
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [38] Column sufficient tensors and tensor complementarity problems
    Haibin Chen
    Liqun Qi
    Yisheng Song
    Frontiers of Mathematics in China, 2018, 13 : 255 - 276
  • [39] A POTENTIAL REDUCTION METHOD FOR TENSOR COMPLEMENTARITY PROBLEMS
    Zhang, Kaili
    Chen, Haibin
    Zhao, Pengfei
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2019, 15 (02) : 429 - 443
  • [40] Tensor Z-eigenvalue complementarity problems
    Meilan Zeng
    Computational Optimization and Applications, 2021, 78 : 559 - 573