Linearized Methods for Tensor Complementarity Problems

被引:17
|
作者
Guan, Hong-Bo [1 ,2 ]
Li, Dong-Hui [1 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[2] Hunan Inst Technol, Sch Math Phys & Energy Engn, Hengyang 421002, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
M-tensor complementarity problem; Linearized method; Lower-dimensional method; Monotone convergence; POSITIVE-DEFINITE;
D O I
10.1007/s10957-019-01627-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we first propose a linearized method for solving the tensor complementarity problem. The subproblems of the method can be solved by solving linear complementarity problems with a constant matrix. We show that if the initial point is appropriately chosen, then the generated sequence of iterates converges to a solution of the problem monotonically. We then propose a lower-dimensional equation method and establish its monotone convergence. The subproblems of the method are lower-dimensional systems of linear equations. At last, we do numerical experiments to test the proposed methods. The results show the efficiency of the proposed methods.
引用
收藏
页码:972 / 987
页数:16
相关论文
共 50 条
  • [1] Linearized Methods for Tensor Complementarity Problems
    Hong-Bo Guan
    Dong-Hui Li
    Journal of Optimization Theory and Applications, 2020, 184 : 972 - 987
  • [2] Randomized Kaczmarz methods for tensor complementarity problems
    Wang, Xuezhong
    Che, Maolin
    Wei, Yimin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (03) : 595 - 615
  • [3] Randomized Kaczmarz methods for tensor complementarity problems
    Xuezhong Wang
    Maolin Che
    Yimin Wei
    Computational Optimization and Applications, 2022, 82 : 595 - 615
  • [4] A linearized method for solving tensor complementarity problems with implicit Z-tensors
    Zheng, Xionghui
    Wang, Yong
    Huang, Zheng-Hai
    OPTIMIZATION LETTERS, 2024, 18 (05) : 1151 - 1171
  • [5] A linearized method for solving tensor complementarity problems with implicit Z-tensors
    Xionghui Zheng
    Yong Wang
    Zheng-Hai Huang
    Optimization Letters, 2024, 18 : 1151 - 1171
  • [6] Tensor Complementarity Problems—Part II: Solution Methods
    Liqun Qi
    Zheng-Hai Huang
    Journal of Optimization Theory and Applications, 2019, 183 : 365 - 385
  • [7] Tensor Complementarity Problems-Part II: Solution Methods
    Qi, Liqun
    Huang, Zheng-Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (02) : 365 - 385
  • [8] ON THE PROPERTIES OF TENSOR COMPLEMENTARITY PROBLEMS
    Yu, W.
    Ling, C.
    He, H.
    PACIFIC JOURNAL OF OPTIMIZATION, 2018, 14 (04): : 675 - 691
  • [9] Tensor eigenvalue complementarity problems
    Jinyan Fan
    Jiawang Nie
    Anwa Zhou
    Mathematical Programming, 2018, 170 : 507 - 539
  • [10] Tensor eigenvalue complementarity problems
    Fan, Jinyan
    Nie, Jiawang
    Zhou, Anwa
    MATHEMATICAL PROGRAMMING, 2018, 170 (02) : 507 - 539