Multi-objective optimization of biomass-based solid oxide fuel cell integrated with Stirling engine and electrolyzer

被引:146
|
作者
Habibollahzade, Ali [1 ]
Gholamian, Ehsan [1 ]
Houshfar, Ehsan [1 ]
Behzadi, Amirmohammad [1 ]
机构
[1] Univ Tehran, Sch Mech Engn, Coll Engn, POB 11155-4563, Tehran, Iran
关键词
Solid oxide fuel cell; Stirling; Multi-objective optimization; Gasification; Anode/cathode recycle; Electrolyzer; POWER-GENERATION SYSTEM; THERMODYNAMIC ANALYSIS; HYDROGEN-PRODUCTION; GAS-TURBINE; PEM ELECTROLYZER; EXERGY ANALYSIS; HYBRID SYSTEM; WASTE HEAT; SOFC; ENERGY;
D O I
10.1016/j.enconman.2018.06.061
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of this study is to increase the power generation/exergy efficiency and reduce total product cost/environmental contamination of solid oxide fuel cells. Accordingly, three integrated systems are proposed and analyzed from energy, exergy, exergoeconomic, and environmental viewpoints through the parametric study. The first model assesses the combination of a gasifier with a solid oxide fuel cell. In the second model, waste heat of the first model is reused in the Stirling engine to enhance the efficiency and power generation. The last model proposes reuse of the surplus power of the Stirling engine in a proton exchange membrane electrolyzer for hydrogen production. Considering total product cost, exergy efficiency, and hydrogen production rate as the objective functions, a multi-objective optimization is applied based on the genetic algorithm. The results indicate that at the optimum operating condition, the exergy efficiency of the model (a), (b), and (c) is 28.51%, 39.51%, and 38.03%, respectively. Corresponding values for the energy efficiency and the emission rate of the models are 31.13%, 67.38%, 66.41%, 1.147 t/MWh, 0.7113 t/MWh, 0.7694 t/MWh. At the optimum solution point, total product cost associated with the model (a), (b), and (c) is 19.33 $/GJ, 18.91 $/GJ, and 24.93 $/GJ, respectively. If the hydrogen production rate and total product cost considered as the objective functions, at optimum solution point, the rate of hydrogen production and overall product cost would be 56.5 kg/day and 41.76 $/GJ, respectively. Overall, the proposed integrated systems demonstrate decent functionality both in thermodynamic, environmental, and economic aspects.
引用
收藏
页码:1116 / 1133
页数:18
相关论文
共 50 条
  • [41] Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm
    Duan, Chen
    Wang, Xinggang
    Shu, Shuiming
    Jing, Changwei
    Chang, Huawei
    ENERGY CONVERSION AND MANAGEMENT, 2014, 84 : 88 - 96
  • [42] Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization
    Cheng, Cai
    Cherian, Jacob
    Sial, Muhammad Safdar
    Zaman, Umer
    Niroumandi, Hosein
    ENERGY, 2021, 224
  • [43] Multi-objective optimization of Stirling engine using non-ideal adiabatic method
    Toghyani, Somayeh
    Kasaeian, Alibakhsh
    Ahmadi, Mohammad H.
    ENERGY CONVERSION AND MANAGEMENT, 2014, 80 : 54 - 62
  • [44] Thermo-economic analysis and multi-objective optimization of a solar dish Stirling engine
    Rostami, Mohsen
    Assareh, Ehsanolah
    Moltames, Rahim
    Jafarinejad, Tohid
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2021, 43 (22) : 2861 - 2877
  • [45] Multi-objective optimization of Stirling engine systems using Front-based Yin-Yang-Pair Optimization
    Punnathanam, Varun
    Kotecha, Prakash
    ENERGY CONVERSION AND MANAGEMENT, 2017, 133 : 332 - 348
  • [46] 4E analysis and multi-objective optimization of a novel multi-generating cycle based on waste heat recovery from solid oxide fuel cell fed by biomass
    Mishamandani, Arian Shabruhi
    Nejad, Amir Qatarani
    Shabani, Najmeh
    Ahmadi, Gholamreza
    RENEWABLE ENERGY FOCUS, 2024, 50
  • [47] Bi-objective optimization of biomass solid waste energy system with a solid oxide fuel cell
    Yu, Dongmin
    Wan, Ximing
    Gu, Bing
    CHEMOSPHERE, 2023, 323
  • [48] Multi-objective optimal control of a steam reformer solid oxide fuel cell system
    Qin, Hongchuan
    Jiang, Jianhua
    Zhang, Haobo
    Zhao, Weiqi
    Li, Xi
    Li, Jian
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 710 - 715
  • [49] Advanced design of cathode array protrusion structure of solid oxide fuel cell based on NSGA-II multi-objective optimization
    Cui, Yi
    Wang, Zhen
    Yang, Laishun
    Jia, Huiming
    Ren, Yunxiu
    Song, Lei
    Yue, Guangxi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 226
  • [50] Multi-objective performance optimization of irreversible molten carbonate fuel cell-Stirling heat engine-reverse osmosis and thermodynamic assessment with ecological objective approach
    Ahmadi, Mohammad H.
    Sameti, Mohammad
    Pourkiaei, Seyed M.
    Ming, Tingzhen
    Pourfayaz, Fathollah
    Chamkha, Ali J.
    Oztop, Hakan F.
    Jokar, Mohammad Ali
    ENERGY SCIENCE & ENGINEERING, 2018, 6 (06) : 783 - 796