Effective bounds for Nori's connectivity theorem

被引:2
|
作者
Nagel, J [1 ]
机构
[1] Univ Essen Gesamthsch, Fachbereich Math 6, D-45117 Essen, Germany
关键词
D O I
10.1016/S0764-4442(98)80086-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We announce an effective version of Nori's connectivity theorem. Using this theorem, we obtain effective versions of results of Green, Voisin and Muller-Stach on the image of the Abel-Jacobi and regulator maps for very general complete intersections. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:189 / 192
页数:4
相关论文
共 50 条
  • [21] Caratheodory's Theorem and moduli of local connectivity
    McNicholl, Timothy H.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) : 76 - 85
  • [22] Sharkovskii's theorem for connectivity Gδ-relations
    Andres, Jan
    Snyrychova, Pavla
    Szuca, Piotr
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (08): : 2377 - 2393
  • [23] Maximum genus, connectivity, and Nebesky's Theorem
    Archdeacon, Dan
    Kotrbcik, Michal
    Nedela, Roman
    Skoviera, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (01) : 51 - 61
  • [24] Mumford's connectivity theorem for homogeneous spaces
    Debarre, O
    MANUSCRIPTA MATHEMATICA, 1996, 89 (04) : 407 - 425
  • [25] Tight bounds for Katona's shadow intersection theorem
    Liu, Xizhi
    Mubayi, Dhruv
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 97
  • [26] Refinement of the upper bounds of the constants in Lyapunov's theorem
    Tyurin, I. S.
    RUSSIAN MATHEMATICAL SURVEYS, 2010, 65 (03) : 586 - 588
  • [27] Euler's Partition Theorem with Upper Bounds on Multiplicities
    Chen, William Y. C.
    Yee, Ae Ja
    Zhu, Albert J. W.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [28] Improved Bounds on Sarkozy's Theorem for Quadratic Polynomials
    Hamel, Mariah
    Lyall, Neil
    Rice, Alex
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (08) : 1761 - 1782
  • [29] An effective version of Belyi's Theorem
    Khadjavi, LS
    JOURNAL OF NUMBER THEORY, 2002, 96 (01) : 22 - 47
  • [30] On Yau's theorem for effective orbifolds
    Faulk, Mitchell
    EXPOSITIONES MATHEMATICAE, 2019, 37 (04) : 382 - 409