Maximum genus, connectivity, and Nebesky's Theorem

被引:0
|
作者
Archdeacon, Dan [1 ]
Kotrbcik, Michal [2 ]
Nedela, Roman [3 ]
Skoviera, Martin [2 ]
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05405 USA
[2] Comenius Univ, Dept Comp Sci, Bratislava 84248, Slovakia
[3] Slovak Acad Sci, Math Inst, Banska Bystrica 97549, Slovakia
关键词
Maximum genus; Nebesky's theorem; Betti number; cycle rank; connectivity; GRAPH;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove lower bounds on the maximum genus of a graph in terms of its connectivity and Betti number (cycle rank). These bounds are tight for all possible values of edge-connectivity and vertex-connectivity and for both simple and non-simple graphs. The use of Nebesky's characterization of maximum genus gives us both shorter proofs and a description of extremal graphs. An additional application of our method shows that the maximum genus is almost additive over the edge cuts.
引用
收藏
页码:51 / 61
页数:11
相关论文
共 50 条
  • [1] A Nebesky-type characterization for relative maximum genus
    Archdeacon, D
    Bonnington, CP
    Siran, J
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 73 (01) : 77 - 98
  • [2] Maximum genus and connectivity
    Chen, JE
    Archdeacon, D
    Gross, JL
    DISCRETE MATHEMATICS, 1996, 149 (1-3) : 19 - 29
  • [3] Maximum genus, girth and connectivity
    Li, DM
    Liu, YP
    EUROPEAN JOURNAL OF COMBINATORICS, 2000, 21 (05) : 651 - 657
  • [4] MAXIMUM GENUS AND CONNECTIVITY OF A GRAPH
    JAEGER, F
    XUONG, NH
    PAYAN, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (05): : 337 - 339
  • [5] ADDITIVITY THEOREM FOR MAXIMUM GENUS OF A GRAPH
    LITTLE, CHC
    RINGEISEN, RD
    DISCRETE MATHEMATICS, 1978, 21 (01) : 69 - 74
  • [6] Maximum genus, connectivity and minimal degree of graphs
    Huang, YQ
    Zhao, TL
    DISCRETE MATHEMATICS, 2005, 300 (1-3) : 110 - 119
  • [7] KURATOWSKI TYPE THEOREM FOR MAXIMUM GENUS OF A GRAPH
    NORDHAUS, EA
    STEWART, BM
    RINGEISE.RD
    WHITE, AT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (01): : 91 - &
  • [8] A Brooks type theorem for the maximum local edge connectivity
    Stiebitz, Michael
    Toft, Bjarne
    ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (01):
  • [9] A remark on Barth's connectivity theorem
    Laterveer, Robert
    MANUSCRIPTA MATHEMATICA, 2012, 138 (1-2) : 23 - 34
  • [10] A remark on Barth’s connectivity theorem
    Robert Laterveer
    Manuscripta Mathematica, 2012, 138 : 23 - 34