Efficient Pose Estimation using Random Forest and Hash Voting

被引:0
|
作者
Sun, Bin [1 ]
Zhang, Xinyu [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
来源
2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA) | 2019年
关键词
Pose estimation; Random forest; Point pair feature; Joint optimization; 3D; REGISTRATION; RECOGNITION; FEATURES;
D O I
10.1109/icma.2019.8816210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pose estimation is one of the key components in robot perception and exhibits a number of unique challenges. First, it is non-trial to directly search for potential poses in given images. Second, it is very challenging to retrieve pose features hidden in images or point clouds in the presence of textureless objects and occlusion. We present a pose estimation pipeline using RGBD images. We first use random forest to perform segmentation and locate the object of interest in a given RGBD image. Then we generate sufficient hypotheses and compute their possibility distribution using hash voting. Our results show high precision and good performance under severe conditions: textureless objects and occlusion.
引用
收藏
页码:1554 / 1559
页数:6
相关论文
共 50 条
  • [31] HUMAN POSE ESTIMATION USING DEEP CONVOLUTIONAL DENSENET HOURGLASS NETWORK WITH INTERMEDIATE POINTS VOTING
    Chu, Shek Wai
    Song, Yang
    Zou, Ju Jia
    Cai, Weidong
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 594 - 598
  • [32] An efficient iterative pose estimation algorithm
    Or, SH
    Luk, WS
    Wong, KH
    King, I
    IMAGE AND VISION COMPUTING, 1998, 16 (05) : 353 - 362
  • [33] Camera Pose Estimation using Human Head Pose Estimation
    Fischer, Robert
    Hoedlmoser, Michael
    Gelautz, Margrit
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 877 - 886
  • [34] Easy Minimax Estimation with Random Forests for Human Pose Estimation
    Tsatsoulis, P. Daphne
    Forsyth, David
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 669 - 684
  • [35] Efficient pose estimation using view-based object representations
    Gabriele Peters
    Machine Vision and Applications, 2004, 16 : 59 - 63
  • [36] Efficient pose estimation using view-based object representations
    Peters, G
    MACHINE VISION AND APPLICATIONS, 2004, 16 (01) : 59 - 63
  • [37] Efficient pose estimation using view-based object representations
    Peters, G
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2003, 2626 : 12 - 21
  • [38] Real-Time Head Pose Estimation Using Random Regression Forests
    Tang, Yunqi
    Sun, Zhenan
    Tan, Tieniu
    BIOMETRIC RECOGNITION: CCBR 2011, 2011, 7098 : 66 - 73
  • [39] Real-Time Head Pose Estimation Using Weighted Random Forests
    Kim, Hyunduk
    Sohn, Myoung-Kyu
    Kim, Dong-Ju
    Ryu, Nuri
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, ICCCI 2014, 2014, 8733 : 554 - 562
  • [40] Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting
    Lindner, Claudia
    Bromiley, Paul A.
    Ionita, Mircea C.
    Cootes, Tim F.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1862 - 1874