Efficient Pose Estimation using Random Forest and Hash Voting

被引:0
|
作者
Sun, Bin [1 ]
Zhang, Xinyu [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
关键词
Pose estimation; Random forest; Point pair feature; Joint optimization; 3D; REGISTRATION; RECOGNITION; FEATURES;
D O I
10.1109/icma.2019.8816210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pose estimation is one of the key components in robot perception and exhibits a number of unique challenges. First, it is non-trial to directly search for potential poses in given images. Second, it is very challenging to retrieve pose features hidden in images or point clouds in the presence of textureless objects and occlusion. We present a pose estimation pipeline using RGBD images. We first use random forest to perform segmentation and locate the object of interest in a given RGBD image. Then we generate sufficient hypotheses and compute their possibility distribution using hash voting. Our results show high precision and good performance under severe conditions: textureless objects and occlusion.
引用
收藏
页码:1554 / 1559
页数:6
相关论文
共 50 条
  • [21] Driver head pose estimation using efficient descriptor fusion
    Alioua, Nawal
    Amine, Aouatif
    Rogozan, Alexandrina
    Bensrhair, Abdelaziz
    Rziza, Mohammed
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2016,
  • [22] Driver head pose estimation using efficient descriptor fusion
    Nawal Alioua
    Aouatif Amine
    Alexandrina Rogozan
    Abdelaziz Bensrhair
    Mohammed Rziza
    EURASIP Journal on Image and Video Processing, 2016
  • [23] 3D Human Pose Estimation Based on Random Forest Misclassification Processing Mechanism
    Cai Y.-H.
    Wang X.-Y.
    Ma J.
    Kong X.-R.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (07): : 1457 - 1466
  • [24] Automatic Localisation of Vertebrae in DXA Images Using Random Forest Regression Voting
    Bromiley, Paul A.
    Adams, Judith E.
    Cootes, Timothy F.
    COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS FOR SPINE IMAGING, CSI 2015, 2016, 9402 : 38 - 51
  • [25] Fully Automatic Segmentation of the Proximal Femur Using Random Forest Regression Voting
    Lindner, C.
    Thiagarajah, S.
    Wilkinson, J. M.
    Wallis, G. A.
    Cootes, T. F.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (08) : 1462 - 1472
  • [26] Robust and Accurate Shape Model Fitting Using Random Forest Regression Voting
    Cootes, Tim F.
    Ionita, Mircea C.
    Lindner, Claudia
    Sauer, Patrick
    COMPUTER VISION - ECCV 2012, PT VII, 2012, 7578 : 278 - 291
  • [27] Real-Time Head Pose Estimation Based on Kalman Filter and Random Regression Forest
    Li C.
    Zhong F.
    Ma X.
    Qin X.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2017, 29 (12): : 2309 - 2316
  • [28] Employee Attrition Estimation Using Random Forest Algorithm
    Pratt, Madara
    Boudhane, Mohcine
    Cakula, Sarma
    BALTIC JOURNAL OF MODERN COMPUTING, 2021, 9 (01): : 49 - 66
  • [29] Human pose estimation from polluted silhouettes using sub-manifold voting strategy
    Shen, Chunfeng
    Lin, Xueyin
    Shi, Yuanchun
    ADVANCES IN MACHINE VISION, IMAGE PROCESSING, AND PATTERN ANALYSIS, 2006, 4153 : 56 - 65
  • [30] Voting-Based Pose Estimation for Robotic Assembly Using a 3D Sensor
    Choi, Changhyun
    Taguchi, Yuichi
    Tuzel, Oncel
    Liu, Ming-Yu
    Ramalingam, Srikumar
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 1724 - 1731