Efficient Pose Estimation using Random Forest and Hash Voting

被引:0
|
作者
Sun, Bin [1 ]
Zhang, Xinyu [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
关键词
Pose estimation; Random forest; Point pair feature; Joint optimization; 3D; REGISTRATION; RECOGNITION; FEATURES;
D O I
10.1109/icma.2019.8816210
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pose estimation is one of the key components in robot perception and exhibits a number of unique challenges. First, it is non-trial to directly search for potential poses in given images. Second, it is very challenging to retrieve pose features hidden in images or point clouds in the presence of textureless objects and occlusion. We present a pose estimation pipeline using RGBD images. We first use random forest to perform segmentation and locate the object of interest in a given RGBD image. Then we generate sufficient hypotheses and compute their possibility distribution using hash voting. Our results show high precision and good performance under severe conditions: textureless objects and occlusion.
引用
收藏
页码:1554 / 1559
页数:6
相关论文
共 50 条
  • [1] Unconstrained Gaze Estimation Using Random Forest Regression Voting
    Kacete, Amine
    Seguier, Renaud
    Collobert, Michel
    Royan, Jerome
    COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 419 - 432
  • [2] Head Pose Estimation using Random Forest and Texture Analysis
    Kang, Min-Joo
    Lee, Ha-Yeon
    Kang, Je-Won
    2016 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA), 2016,
  • [3] Hand Pose Estimation in Depth Image using CNN and Random Forest
    Chen, Xi
    Cao, Zhiguo
    Xiao, Yang
    Fang, Zhiwen
    MIPPR 2017: PATTERN RECOGNITION AND COMPUTER VISION, 2017, 10609
  • [4] Head-Pose Estimation In-the-Wild Using a Random Forest
    Valle, Roberto
    Miguel Buenaposada, Jose
    Valdes, Antonio
    Baumela, Luis
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, 2016, 9756 : 24 - 33
  • [5] Human Pose Estimation Using Deep Consensus Voting
    Lifshitz, Ita
    Fetaya, Ethan
    Ullman, Shimon
    COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 : 246 - 260
  • [6] COUNT Forest: CO-voting Uncertain Number of Targets using Random Forest for Crowd Density Estimation
    Viet-Quoc Pham
    Kozakaya, Tatsuo
    Yamaguchi, Osamu
    Okada, Ryuzo
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3253 - 3261
  • [7] 3D Pose Estimation of a Front-Pointing Hand Using a Random Regression Forest
    Fujita, Dai
    Komuro, Takashi
    COMPUTER VISION - ACCV 2016 WORKSHOPS, PT III, 2017, 10118 : 197 - 211
  • [8] PERSON-INDEPENDENT HEAD POSE ESTIMATION BASED ON RANDOM FOREST REGRESSION
    Li, Yali
    Wang, Shengjin
    Ding, Xiaoqing
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 1521 - 1524
  • [9] Human tracking with statistical shape model and rough pose estimation by random forest
    Hashimoto, Kiyoshi
    Kataoka, Hirokatsu
    Sato, Yuji
    Tanabiki, Masamoto
    Aoki, Yoshimitsu
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2015, 81 (12): : 1162 - 1167
  • [10] Point-to-Pose Voting based Hand Pose Estimation using Residual Permutation Equivariant Layer
    Li, Shile
    Lee, Dongheui
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11919 - 11928