Further characterizations of Sobolev spaces

被引:0
|
作者
Nguyen, Hoai-Minh [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
关键词
Sobolev spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (F-n)(n is an element of N) be a sequence of non-decreasing functions from [0, +infinity) into [0, +infinity). Under some suitable hypotheses on (F-n)(n is an element of N), we prove that if g is an element of L-p(R-N), 1 < p < +infinity, satisfies [GRAPHICS] then g is an element of W-1,W- p(R-N) and moreover [GRAPHICS] where K-N, p is a positive constant depending only on N and p. This extends some results in J. Bourgain and H.-M. Nguyen [A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris 343, 75-80 (2006)] and H.-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237, 689-720 (2006)]. We also present some partial results concerning the case p = 1 and various open problems.
引用
收藏
页码:191 / 229
页数:39
相关论文
共 50 条
  • [41] THE CHARACTERIZATIONS OF HARDY-SOBOLEV SPACES BY FRACTIONAL SQUARE FUNCTIONS RELATED TO SCHRODINGER OPERATORS
    Huang, Jizheng
    Li, Pengtao
    Liu, Yu
    Xin, Jie
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 607 - 623
  • [42] Characterizations of Orlicz-Sobolev Spaces by Means of Generalized Orlicz-Poincare Inequalities
    Heikkinen, Toni
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
  • [44] Haar Frame Characterizations of Besov-Sobolev Spaces and Optimal Embeddings into Their Dyadic Counterparts
    Garrigos, Gustavo
    Seeger, Andreas
    Ullrich, Tino
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2023, 29 (03)
  • [45] Characterizations of Sobolev spaces associated to operators satisfying off-diagonal estimates on balls
    Zhang, Junqiang
    Chang, Der-Chen
    Yang, Dachun
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (08) : 2907 - 2929
  • [46] Sobolev spaces and Sobolev sheaves
    Lebeau, Gilles
    ASTERISQUE, 2016, (383) : 61 - 94
  • [47] Characterizations to the fractional Sobolev inequality
    Hurri-Syrjanen, Ritva
    Vahakangas, Antti V.
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VII, 2017, 699 : 145 - 154
  • [48] Geometric Characterizations of Embedding Theorems: For Sobolev, Besov, and Triebel–Lizorkin Spaces on Spaces of Homogeneous Type—via Orthonormal Wavelets
    Yanchang Han
    Yongsheng Han
    Ziyi He
    Ji Li
    Cristina Pereyra
    The Journal of Geometric Analysis, 2021, 31 : 8947 - 8978
  • [49] Sobolev spaces
    不详
    NONLINEAR POTENTIAL THEORY AND WEIGHTED SOBOLEV SPACES, 2000, 1736 : 15 - 68
  • [50] Further decay results on the system of NLS equations in lower order Sobolev spaces
    Li, Chunhua
    NONLINEAR DYNAMICS IN PARTIAL DIFFERENTIAL EQUATIONS, 2015, 64 : 437 - 444