Further characterizations of Sobolev spaces

被引:0
|
作者
Nguyen, Hoai-Minh [1 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris, France
关键词
Sobolev spaces;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (F-n)(n is an element of N) be a sequence of non-decreasing functions from [0, +infinity) into [0, +infinity). Under some suitable hypotheses on (F-n)(n is an element of N), we prove that if g is an element of L-p(R-N), 1 < p < +infinity, satisfies [GRAPHICS] then g is an element of W-1,W- p(R-N) and moreover [GRAPHICS] where K-N, p is a positive constant depending only on N and p. This extends some results in J. Bourgain and H.-M. Nguyen [A new characterization of Sobolev spaces, C. R. Math. Acad. Sci. Paris 343, 75-80 (2006)] and H.-M. Nguyen [Some new characterizations of Sobolev spaces, J. Funct. Anal. 237, 689-720 (2006)]. We also present some partial results concerning the case p = 1 and various open problems.
引用
收藏
页码:191 / 229
页数:39
相关论文
共 50 条
  • [31] Several equivalent characterizations of fractional Hajłasz-Morrey-Sobolev spaces
    Wen Yuan
    Yu-feng Lu
    Da-chun Yang
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 343 - 354
  • [32] Generalized Frank characterizations of Muckenhoupt weights and homogeneous ball Banach Sobolev spaces
    Zhao, Yirui
    Li, Yinqin
    Yang, Dachun
    Yuan, Wen
    Zhang, Yangyang
    ADVANCES IN MATHEMATICS, 2024, 458
  • [33] Pointwise Characterizations of Even Order Sobolev Spaces via Derivatives of Ball Averages
    Xie, Guangheng
    Yang, Dachun
    Yuan, Wen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2019, 62 (03): : 681 - 699
  • [34] Characterizations for the existence of traces of first-order Sobolev spaces on hyperbolic fillings
    Manzi Huang
    Zhihao Xu
    Monatshefte für Mathematik, 2024, 203 (2) : 387 - 417
  • [35] Several equivalent characterizations of fractional Haj lasz-Morrey-Sobolev spaces
    YUAN Wen
    LU Yu-feng
    YANG Da-chun
    AppliedMathematics:AJournalofChineseUniversities, 2016, 31 (03) : 343 - 354
  • [36] Littlewood-Paley characterizations of fractional Sobolev spaces via averages on balls
    Dai, Feng
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1135 - 1163
  • [37] Characterizations for the existence of traces of first-order Sobolev spaces on hyperbolic fillings
    Huang, Manzi
    Xu, Zhihao
    MONATSHEFTE FUR MATHEMATIK, 2024, 203 (02): : 387 - 417
  • [38] Haar Frame Characterizations of Besov–Sobolev Spaces and Optimal Embeddings into Their Dyadic Counterparts
    Gustavo Garrigós
    Andreas Seeger
    Tino Ullrich
    Journal of Fourier Analysis and Applications, 2023, 29
  • [39] VECTOR-VALUED INEQUALITIES ON HERZ SPACES AND CHARACTERIZATIONS OF HERZ-SOBOLEV SPACES WITH VARIABLE EXPONENT
    Izuki, Mitsuo
    GLASNIK MATEMATICKI, 2010, 45 (02) : 475 - 503
  • [40] Dirac-Sobolev Spaces and Sobolev Spaces
    Ichinose, Takashi
    Saito, Yoshimi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (02): : 291 - 310