Cutting Cycles of Rods in Space: Hardness and Approximation

被引:0
|
作者
Aronov, Boris [1 ]
de Berg, Mark [2 ]
Gray, Chris [2 ]
Mumford, Elena [2 ]
机构
[1] Polytech Univ, Dept Comp & Informat Sci, 6 Metrotech Ctr, Brooklyn, NY 11201 USA
[2] Tech Univ Eindhoven, Dept Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of cutting a set of rods (line segments in R-3) into fragments, using a minimum number of cuts, so that the resulting set of fragments admits a depth order. We prove that this problem is NP-complete, even when the rods have only three distinct orientations. We also give a polynomial-time approximation algorithm with no restriction on rod orientation that computes a solution of size O(tau log tau log log tau), where tau is the size of an optimal solution.
引用
收藏
页码:1241 / +
页数:2
相关论文
共 50 条
  • [41] Approximation and hardness of Shift-Bribery
    Faliszewski, Piotr
    Manurangsi, Pasin
    Sornat, Krzysztof
    ARTIFICIAL INTELLIGENCE, 2021, 298
  • [42] Proof verification and the hardness of approximation problems
    Arora, S
    Lund, C
    Motwani, R
    Sudan, M
    Szegedy, M
    JOURNAL OF THE ACM, 1998, 45 (03) : 501 - 555
  • [43] Hardness and approximation of octilinear Steiner trees
    Mueller-Hannemann, Matthias
    Schulze, Anna
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2007, 17 (03) : 231 - 260
  • [44] Metric Violation Distance: Hardness and Approximation
    Chenglin Fan
    Benjamin Raichel
    Gregory Van Buskirk
    Algorithmica, 2022, 84 : 1441 - 1465
  • [45] A hardness of approximation result in metric geometry
    Zarathustra Brady
    Larry Guth
    Fedor Manin
    Selecta Mathematica, 2020, 26
  • [46] Strong hardness of approximation for tree transversals
    Lee, Euiwoong
    Wang, Pengxiang
    INFORMATION PROCESSING LETTERS, 2023, 181
  • [47] Approximation algorithms and hardness for domination with propagation
    Aazami, Ashkan
    Stilp, Michael D.
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2007, 4627 : 1 - +
  • [48] Capacitated Assortment Optimization: Hardness and Approximation
    Desir, Antoine
    Goyal, Vineet
    Zhang, Jiawei
    OPERATIONS RESEARCH, 2022, 70 (02) : 893 - 904
  • [49] New Hardness Results for Diophantine Approximation
    Eisenbrand, Friedrich
    Rothvoss, Thomas
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, 2009, 5687 : 98 - 110
  • [50] Approximation hardness of TSP with bounded metrics
    Engebretsen, L
    Karpinski, M
    AUTOMATA LANGUAGES AND PROGRAMMING, PROCEEDING, 2001, 2076 : 201 - 212