Cutting Cycles of Rods in Space: Hardness and Approximation

被引:0
|
作者
Aronov, Boris [1 ]
de Berg, Mark [2 ]
Gray, Chris [2 ]
Mumford, Elena [2 ]
机构
[1] Polytech Univ, Dept Comp & Informat Sci, 6 Metrotech Ctr, Brooklyn, NY 11201 USA
[2] Tech Univ Eindhoven, Dept Comp Sci, NL-5600 MB Eindhoven, Netherlands
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the problem of cutting a set of rods (line segments in R-3) into fragments, using a minimum number of cuts, so that the resulting set of fragments admits a depth order. We prove that this problem is NP-complete, even when the rods have only three distinct orientations. We also give a polynomial-time approximation algorithm with no restriction on rod orientation that computes a solution of size O(tau log tau log log tau), where tau is the size of an optimal solution.
引用
收藏
页码:1241 / +
页数:2
相关论文
共 50 条
  • [31] ON THE APPROXIMATION OF ACCELERATION-WAVES IN RODS
    JEFFREY, A
    GILBERT, RP
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1987, 22 (03) : 209 - 215
  • [32] Cutting condition designing technique based on cutting simulation for wires and rods
    Yamamoto, Yuya
    Akazawa, Koichi
    Matsugasako, Akihiro
    R and D: Research and Development Kobe Steel Engineering Reports, 2019, 69 (01): : 45 - 49
  • [33] A hardness of approximation result in metric geometry
    Brady, Zarathustra
    Guth, Larry
    Manin, Fedor
    SELECTA MATHEMATICA-NEW SERIES, 2020, 26 (04):
  • [34] Proof verification and the hardness of approximation problems
    Princeton Univ, Princeton, United States
    J ACM, 3 (501-555):
  • [35] Approximation hardness of dominating set problems
    Chlebík, M
    Chlebíková, J
    ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 192 - 203
  • [36] Metric Violation Distance: Hardness and Approximation
    Fan, Chenglin
    Raichel, Benjamin
    Van Buskirk, Gregory
    ALGORITHMICA, 2022, 84 (05) : 1441 - 1465
  • [37] Metric Violation Distance: Hardness and Approximation
    Fan, Chenglin
    Raichel, Benjamin
    Van Buskirk, Gregory
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 196 - 209
  • [38] On the Parameterized and Approximation Hardness of Metric Dimension
    Hartung, Sepp
    Nichterlein, Andre
    2013 IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC), 2013, : 266 - 276
  • [39] Distributed Verification and Hardness of Distributed Approximation
    Das Sarma, Atish
    Holzer, Stephan
    Kor, Liah
    Korman, Amos
    Nanongkai, Danupon
    Pandurangan, Gopal
    Peleg, David
    Wattenhofer, Roger
    STOC 11: PROCEEDINGS OF THE 43RD ACM SYMPOSIUM ON THEORY OF COMPUTING, 2011, : 363 - 372
  • [40] Hardness and approximation of octilinear Steiner trees
    Müller-Hannemann, M
    Schulze, A
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 256 - 265