Powers of the Vandermonde determinant, Schur functions and recursive formulas

被引:1
|
作者
Ballantine, C. [1 ]
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
关键词
STATES;
D O I
10.1088/1751-8113/45/31/315201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The decomposition of an even power of the Vandermonde determinant in terms of the basis of Schur functions matches the decomposition of the Laughlin wavefunction as a linear combination of Slater wavefunctions and thus contributes to the understanding of the quantum Hall effect. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, we give recursive formulas for the coefficient of the Schur function s(mu) in the decomposition of an even power of the Vandermonde determinant in n + 1 variables in terms of the coefficient of the Schur function s(lambda) in the decomposition of the same even power of the Vandermonde determinant in n variables if the Young diagram of mu is obtained from the Young diagram of lambda by adding a tetris type shape to the top or to the left.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Extensions of Vandermonde determinant by computing divided differences
    Chu, Wenchang
    Wang, Xiaoyuan
    AFRIKA MATEMATIKA, 2018, 29 (1-2) : 73 - 79
  • [42] On the Vandermonde Determinant of Padua-like Points
    Bos, Len
    De Marchi, Stefano
    Waldron, Shayne
    DOLOMITES RESEARCH NOTES ON APPROXIMATION, 2009, 2 : 1 - 15
  • [43] On Schur inequality and Schur functions
    Radulescu, Marius
    Radulescu, Sorin
    Alexandrescu, Petrus
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2005, 32 : 214 - 220
  • [44] Optimization of the determinant of the Vandermonde matrix and related matrices
    Lundengard, Karl
    Osterberg, Jonas
    Silvestrov, Sergei
    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES (ICNPAA 2014), 2014, 1637 : 627 - 636
  • [45] A partial order on partitions and the generalized Vandermonde determinant
    Tu, LW
    JOURNAL OF ALGEBRA, 2004, 278 (01) : 127 - 133
  • [46] Optimization of the Determinant of the Vandermonde Matrix and Related Matrices
    Lundengard, Karl
    Osterberg, Jonas
    Silvestrov, Sergei
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2018, 20 (04) : 1417 - 1428
  • [47] Optimization of the Determinant of the Vandermonde Matrix and Related Matrices
    Karl Lundengård
    Jonas Österberg
    Sergei Silvestrov
    Methodology and Computing in Applied Probability, 2018, 20 : 1417 - 1428
  • [48] Skew quasisymmetric Schur functions and noncommutative Schur functions
    Bessenrodt, C.
    Luoto, K.
    van Willigenburg, S.
    ADVANCES IN MATHEMATICS, 2011, 226 (05) : 4492 - 4532
  • [49] A Determinant of Derivatives and Powers
    Chapman, Robin
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (06): : 573 - 574
  • [50] DETERMINANT OF PRIMITIVE POWERS
    HEUER, CV
    HEUER, GA
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (10): : 1142 - &