Powers of the Vandermonde determinant, Schur functions and recursive formulas

被引:1
|
作者
Ballantine, C. [1 ]
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
关键词
STATES;
D O I
10.1088/1751-8113/45/31/315201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The decomposition of an even power of the Vandermonde determinant in terms of the basis of Schur functions matches the decomposition of the Laughlin wavefunction as a linear combination of Slater wavefunctions and thus contributes to the understanding of the quantum Hall effect. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, we give recursive formulas for the coefficient of the Schur function s(mu) in the decomposition of an even power of the Vandermonde determinant in n + 1 variables in terms of the coefficient of the Schur function s(lambda) in the decomposition of the same even power of the Vandermonde determinant in n variables if the Young diagram of mu is obtained from the Young diagram of lambda by adding a tetris type shape to the top or to the left.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] A VANDERMONDE-LIKE DETERMINANT
    ROSELLE, DP
    SPITAL, S
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (06): : 671 - &
  • [22] A compound determinant identity for rectangular matrices and determinants of Schur functions
    Ishikawa, Masao
    Ito, Masahiko
    Okada, Soichi
    ADVANCES IN APPLIED MATHEMATICS, 2013, 51 (05) : 635 - 654
  • [23] On a problem related to the Vandermonde determinant
    Sogabe, Tomohiro
    El-Mikkawy, Moawwad
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (13) : 2997 - 2999
  • [24] SOME ASYMPTOTIC FORMULAS INVOLVING POWERS OF ARITHMETIC FUNCTIONS
    SITARAMAIAH, V
    SUBBARAO, MV
    LECTURE NOTES IN MATHEMATICS, 1989, 1395 : 200 - 234
  • [25] Schur Q-functions and degeneracy locus formulas for morphisms with symmetries
    Lascoux, A
    Pragacz, P
    RECENT PROGRESS IN INTERSECTION THEORY, 2000, : 239 - 263
  • [26] LATTICE PATH PROOF OF THE RIBBON DETERMINANT FORMULA FOR SCHUR-FUNCTIONS
    UENO, K
    NAGOYA MATHEMATICAL JOURNAL, 1991, 124 : 55 - 59
  • [27] Admissible partitions and the square of the Vandermonde determinant
    Wybourne, BG
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 425 - 427
  • [28] A CASE OF MATHEMATICAL EPONYMY: THE VANDERMONDE DETERMINANT
    Ycart, Bernard
    REVUE D HISTOIRE DES MATHEMATIQUES, 2013, 19 (01): : 43 - 77
  • [29] Arithmetical applications of an identity for the Vandermonde determinant
    Ramana, D. S.
    ACTA ARITHMETICA, 2007, 130 (04) : 351 - 359
  • [30] A Recursive Method for Inversion of the Vandermonde Matrix
    Zhang, Xinjian
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, : 214 - 216