Powers of the Vandermonde determinant, Schur functions and recursive formulas

被引:1
|
作者
Ballantine, C. [1 ]
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
关键词
STATES;
D O I
10.1088/1751-8113/45/31/315201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The decomposition of an even power of the Vandermonde determinant in terms of the basis of Schur functions matches the decomposition of the Laughlin wavefunction as a linear combination of Slater wavefunctions and thus contributes to the understanding of the quantum Hall effect. We investigate several combinatorial properties of the coefficients in the decomposition. In particular, we give recursive formulas for the coefficient of the Schur function s(mu) in the decomposition of an even power of the Vandermonde determinant in n + 1 variables in terms of the coefficient of the Schur function s(lambda) in the decomposition of the same even power of the Vandermonde determinant in n variables if the Young diagram of mu is obtained from the Young diagram of lambda by adding a tetris type shape to the top or to the left.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] GENERALIZED VANDERMONDE DETERMINANTS AND SCHUR FUNCTIONS
    KING, RC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 48 (01) : 53 - 56
  • [2] POWERS OF THE VANDERMONDE DETERMINANT AND THE QUANTUM HALL-EFFECT
    SCHARF, T
    THIBON, JY
    WYBOURNE, BG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (12): : 4211 - 4219
  • [3] FORMULAS FOR POWERS AND FUNCTIONS OF MATRICES
    KANTOR, IL
    TRISHIN, IM
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1993, 186 : 1 - 13
  • [4] Schur Polynomials Do Not Have Small Formulas If the Determinant does not
    Prasad Chaugule
    Mrinal Kumar
    Nutan Limaye
    Chandra Kanta Mohapatra
    Adrian She
    Srikanth Srinivasan
    computational complexity, 2023, 32
  • [5] Schur Polynomials Do Not Have Small Formulas If the Determinant does not
    Chaugule, Prasad
    Kumar, Mrinal
    Limaye, Nutan
    Mohapatra, Chandra Kanta
    She, Adrian
    Srinivasan, Srikanth
    COMPUTATIONAL COMPLEXITY, 2023, 32 (01)
  • [6] A categorification of the Vandermonde determinant
    Chandler, Alex
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2021, 30 (13)
  • [7] NOTE ON VANDERMONDE DETERMINANT
    BRULE, JD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1964, AC 9 (03) : 314 - &
  • [8] An Explicit Factorization Of Totally Positive Generalized Vandermonde Matrices Avoiding Schur Functions
    Chen, Young-Ming
    Li, Hsuan-Chu
    Tan, Eng-Tjioe
    APPLIED MATHEMATICS E-NOTES, 2008, 8 : 138 - 147
  • [9] An application of the Vandermonde determinant
    Xu, Junqin
    Zhao, Likuan
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2006, 37 (02) : 229 - 231
  • [10] GENERALIZATION OF VANDERMONDE DETERMINANT
    VENIT, S
    SIAM REVIEW, 1975, 17 (04) : 694 - 695