Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties

被引:17
|
作者
Goldfain, Aaron M. [1 ]
Lemaillet, Paul [1 ,3 ]
Allen, David W. [1 ]
Briggman, Kimberly A. [2 ]
Hwang, Jeeseong [2 ]
机构
[1] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA
[2] NIST, Appl Phys Div, Boulder, CO 80309 USA
[3] US FDA, Div Imaging Diagnost & Software Reliabil, Off Sci & Engn Labs, Ctr Devices & Radiol Hlth, 10903 New Hampshire Ave, Silver Spring, MD USA
关键词
tissue-mimicking phantom; polydimethylsiloxane; integrating sphere; scattering coefficient spectrum; absorption coefficient spectrum; OPTIMIZED INTEGRATING SPHERE; PRECISE DETERMINATION; INDIA INK; ABSORPTION; CONTRAST;
D O I
10.1117/1.JBO.27.7.074706
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Significance: The polymer, polydimethylsiloxane (PDMS), has been increasingly used to make tissue simulating phantoms due to its excellent processability, durability, flexibility, and limited tunability of optical, mechanical, and thermal properties. We report on a robust technique to fabricate PDMS-based tissue-mimicking phantoms where the broad range of scattering and absorption properties are independently adjustable in the visible- to near-infrared wavelength range from 500 to 850 nm. We also report on an analysis method to concisely quantify the phantoms' broadband characteristics with four parameters. Aim: We report on techniques to manufacture and characterize solid tissue-mimicking phantoms of PDMS polymers. Tunability of the absorption (mu(a) ( lambda ) ) and reduced scattering coefficient spectra (mu s '(lambda)) in the wavelength range of 500 to 850 nm is demonstrated by adjusting the concentrations of light absorbing carbon black powder (CBP) and light scattering titanium dioxide powder (TDP) added into the PDMS base material. Approach: The mu(a) ( lambda ) and mu s '(lambda) of the phantoms were obtained through measurements with a broadband integrating sphere system and by applying an inverse adding doubling algorithm. Analyses of mu(a) ( lambda ) and mu s '(lambda) of the phantoms, by fitting them to linear and power law functions, respectively, demonstrate that independent control of mu(a) ( lambda ) and mu s '(lambda) is possible by systematically varying the concentrations of CBP and TDP. Results: Our technique quantifies the phantoms with four simple fitting parameters enabling a concise tabulation of their broadband optical properties as well as comparisons to the optical properties of biological tissues. We demonstrate that, to a limited extent, the scattering properties of our phantoms mimic those of human tissues of various types. A possible way to overcome this limitation is demonstrated with phantoms that incorporate polystyrene microbead scatterers. Conclusions: Our manufacturing and analysis techniques may further promote the application of PDMS-based tissue-mimicking phantoms and may enable robust quality control and quality checks of the phantoms. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Improving the homogeneity of tissue-mimicking cryogel phantoms for medical imaging
    Minton, Joshua A.
    Iravani, Amin
    Yousefi, Azizeh-Mitra
    MEDICAL PHYSICS, 2012, 39 (11) : 6796 - 6807
  • [32] Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation
    Lina Hacker
    Heidrun Wabnitz
    Antonio Pifferi
    T. Joshua Pfefer
    Brian W. Pogue
    Sarah E. Bohndiek
    Nature Biomedical Engineering, 2022, 6 : 541 - 558
  • [33] Characterization and evaluation of tissue-mimicking gelatin phantoms for use with MRgFUS
    Farrer, Alexis I.
    Odeen, Henrik
    de Bever, Joshua
    Coats, Brittany
    Parker, Dennis L.
    Payne, Allison
    Christensen, Douglas A.
    JOURNAL OF THERAPEUTIC ULTRASOUND, 2015, 3
  • [34] Tissue-mimicking phantoms for performance evaluation of photoacoustic microscopy systems
    Hsu, Hsun-Chia
    Wear, Keitha
    Pfefer, Tjoshua
    Vogt, William C.
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (03): : 1357 - 1373
  • [35] Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation
    Hacker, Lina
    Wabnitz, Heidrun
    Pifferi, Antonio
    Pfefer, T. Joshua
    Pogue, Brian W.
    Bohndiek, Sarah E.
    NATURE BIOMEDICAL ENGINEERING, 2022, 6 (05) : 541 - 558
  • [36] The effect of magnetic nanoparticles on the acoustic properties of tissue-mimicking agar-gel phantoms
    Jozefczak, A.
    Kaczmarek, K.
    Kubovcikova, M.
    Rozynek, Z.
    Hornowski, T.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 431 : 172 - 175
  • [37] Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering
    Wrobel, Maciej S.
    Popov, Alexey P.
    Bykov, Alexander V.
    Tuchin, Valery V.
    Jedrzejewska-Szczerska, Malgorzata
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (06): : 2088 - 2094
  • [38] Focused Shear Wave Beam Propagation in Tissue-Mimicking Phantoms
    Cormack, John M.
    Chao, Yu-hsuan
    Archer, Branch T.
    Kim, Kang
    Spratt, Kyle S.
    Hamilton, Mark F.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2024, 71 (02) : 621 - 630
  • [39] Reusable tissue-mimicking hydrogel phantoms for focused ultrasound ablation
    Sun, Ming-Kuan
    Shieh, Jay
    Lo, Chia-Wen
    Chen, Chuin-Shan
    Chen, Ben-Ting
    Huang, Chang-Wei
    Chen, Wen-Shiang
    ULTRASONICS SONOCHEMISTRY, 2015, 23 : 399 - 405
  • [40] Interlaboratory Comparison of Backscatter Coefficient Estimates for Tissue-Mimicking Phantoms
    Anderson, Janelle J.
    Herd, Maria-Teresa
    King, Michael R.
    Haak, Alexander
    Hafez, Zachary T.
    Song, Jun
    Oelze, Michael L.
    Madsen, Ernest L.
    Zagzebski, James A.
    O'Brien, William D., Jr.
    Hall, Timothy J.
    ULTRASONIC IMAGING, 2010, 32 (01) : 48 - 64