Drought analysis and water resource availability using standardised precipitation evapotranspiration index

被引:74
|
作者
Hui-Mean, Foo [1 ]
Yusop, Zulkifli [1 ]
Yusof, Fadhilah [2 ]
机构
[1] Univ Teknol Malaysia, Ctr Environm Sustainabil & Water Secur, Utm Johor Bahru 81310, Johor, Malaysia
[2] Univ Teknol Malaysia, Dept Math Sci, Fac Sci, Utm Johor Bahru 81310, Johor, Malaysia
关键词
Potential evapotranspiration; Climatic water balance; Standardised precipitation evapotranspiration index; Average recurrence interval; PENINSULAR MALAYSIA; MANN-KENDALL; POTENTIAL EVAPOTRANSPIRATION; HYDROLOGICAL SERIES; SEVERITY INDEX; TREND ANALYSIS; CHINA; RAINFALL; CLIMATE; DATASETS;
D O I
10.1016/j.atmosres.2017.10.014
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Trend analysis for potential evapotranspiration (PET) and climatic water balance (CWB) is critical in identifying the wetness or dryness episodes with respect to the water surplus or deficit. The PET is computed based on the monthly average temperature for the entire Peninsular Malaysia using Thornthwaite parameterization. The trends and slope's magnitude for the PET and CWB were then investigated using Mann-Kendall, Spearman's rho tests and Thiel-Sen estimator. The 1-, 3-, 6- and 12-month standardised precipitation evapotranspiration index (SPEI) is applied to determine the drought episodes and the average recurrence interval are calculated based on the SPEI. The results indicate that most of the stations show an upward trend in annual and monthly PET while majority of the regions show an upward trend in annual CWB except for the Pahang state. The increasing trends detected in the CWB describe water is in excess especially during the northeast monsoons while the decreasing trends imply water insufficiency. The excess water is observed mostly in January especially in the west coast, east coast and southwest regions that suggest more water is available for crop requirement. The average recurrence interval for drought episodes is almost the same for the smaller severity with various time scale of SPEI and high probability of drought occurrence is observed for some regions. The findings are useful for policy makers and practitioners to improve water resources planning and management, in particular to minimise drought effects in the future. Future research shall address the influence of topography on drought behaviour using more meteorological stations and to include east Malaysia in the analysis.
引用
收藏
页码:102 / 115
页数:14
相关论文
共 50 条
  • [31] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Liu, Changhong
    Yang, Cuiping
    Yang, Qi
    Wang, Jiao
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [32] Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China
    Changhong Liu
    Cuiping Yang
    Qi Yang
    Jiao Wang
    Scientific Reports, 11
  • [33] Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh
    Md Giashuddin Miah
    Hasan Muhammad Abdullah
    Changyoon Jeong
    Environmental Monitoring and Assessment, 2017, 189
  • [34] Influence of the accuracy of reference crop evapotranspiration on drought monitoring using standardized precipitation evapotranspiration index in mainland China
    Yao, Ning
    Li, Yi
    Dong, Qin'ge
    Li, Linchao
    Peng, Lingling
    Feng, Hao
    LAND DEGRADATION & DEVELOPMENT, 2020, 31 (02) : 266 - 282
  • [35] Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh
    Miah, Md Giashuddin
    Abdullah, Hasan Muhammad
    Jeong, Changyoon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2017, 189 (11)
  • [36] Spatio-Temporal Variability of Drought in Pakistan Using Standardized Precipitation Evapotranspiration Index
    Jamro, Shoaib
    Dars, Ghulam Hussain
    Ansari, Kamran
    Krakauer, Nir Y.
    APPLIED SCIENCES-BASEL, 2019, 9 (21):
  • [37] Regional Drought Analysis with Standardized Precipitation Evapotranspiration Index (SPEI): Gediz Basin, Turkey
    Oney, Mustafa
    Anli, Alper Serdar
    JOURNAL OF AGRICULTURAL SCIENCES-TARIM BILIMLERI DERGISI, 2023, 29 (04): : 1032 - 1049
  • [38] A global drought-aridity index: The spatiotemporal standardized precipitation evapotranspiration index
    Yu, Hang
    Wang, Long
    Zhang, Jianlong
    Chen, Yuanfang
    ECOLOGICAL INDICATORS, 2023, 153
  • [39] A drought index for Rainfed agriculture: The Standardized Precipitation Crop Evapotranspiration Index (SPCEI)
    Pei, Wei
    Fu, Qiang
    Liu, Dong
    Li, Tianxiao
    HYDROLOGICAL PROCESSES, 2019, 33 (05) : 803 - 815
  • [40] A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index
    Vicente-Serrano, Sergio M.
    Begueria, Santiago
    Lopez-Moreno, Juan I.
    JOURNAL OF CLIMATE, 2010, 23 (07) : 1696 - 1718