Pygpc: A sensitivity and uncertainty analysis toolbox for Python']Python

被引:17
|
作者
Weise, Konstantin [1 ,2 ]
Possner, Lucas [3 ]
Mueller, Erik [3 ]
Gast, Richard [1 ]
Knoesche, Thomas R. [1 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Stephanstr 1a, D-04103 Leipzig, Germany
[2] Tech Univ Ilmenau, Adv Electromagnet Grp, Helmholtzpl 2, D-98693 Ilmenau, Germany
[3] Leipzig Univ Appl Sci, Inst Elect & Biomed Informat Technol, Wachterstr 13, D-04107 Leipzig, Germany
[4] Tech Univ Ilmenau, Inst Biomed Engn & Informat, Gustav Kirchhoff Str 2, D-98693 Ilmenau, Germany
关键词
Sensitivity analysis; Uncertainty analysis; Polynomial chaos; DYNAMIC-MODELS; ADAPTATION; EEG;
D O I
10.1016/j.softx.2020.100450
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non -intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient -based sensitivity measures and Sobol indices to reveal the relative importance of model parameters. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] PACKMAN-Molecule: Python']Python toolbox for structural bioinformatics
    Khade, Pranav M.
    Jernigan, Robert L.
    Gromiha, Michael
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [42] The qspec Python']Python package: A physics toolbox for laser spectroscopy
    Mueller, P.
    Noertershaeuser, W.
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 311
  • [43] Diddy: A Python']Python Toolbox for Infinite Discrete Dynamical Systems
    Salo, Ville
    Torma, Ilkka
    CELLULAR AUTOMATA AND DISCRETE COMPLEX SYSTEMS, AUTOMATA 2023, 2023, 14152 : 33 - 47
  • [44] PyPore: a python']python toolbox for nanopore sequencing data handling
    Semeraro, Roberto
    Magi, Alberto
    BIOINFORMATICS, 2019, 35 (21) : 4445 - 4447
  • [45] GliderTools: A Python']Python Toolbox for Processing Underwater Glider Data
    Gregor, Luke
    Ryan-Keogh, Thomas J.
    Nicholson, Sarah-Anne
    du Plessis, Marcel
    Giddy, Isabelle
    Swart, Sebastiaan
    FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [46] Causal Discovery Toolbox: Uncovering causal relationships in Python']Python
    Kalainathan, Diviyan
    Goudet, Olivier
    Dutta, Ritik
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [47] EFI: A Toolbox for Feature Importance Fusion and Interpretation in Python']Python
    Kumar, Aayush
    Mase, Jimiama M.
    Rengasamy, Divish
    Rothwell, Benjamin
    Torres, Mercedes Torres
    Winkler, David A.
    Figueredo, Grazziela P.
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, LOD 2022, PT II, 2023, 13811 : 249 - 264
  • [48] PyNeval: A Python']Python Toolbox for Evaluating Neuron Reconstruction Performance
    Zhang, Han
    Liu, Chao
    Yu, Yifei
    Dai, Jianhua
    Zhao, Ting
    Zheng, Nenggan
    FRONTIERS IN NEUROINFORMATICS, 2022, 15
  • [49] FrosPy: A Modular Python']Python Toolbox for Normal Mode Seismology
    Schneider, Simon
    Talavera-Soza, Sujania
    Jagt, Lisanne
    Deuss, Arwen
    SEISMOLOGICAL RESEARCH LETTERS, 2022, 93 (2A) : 967 - 974
  • [50] Tutorial: The LuxPy Python']Python Toolbox for Lighting and Color Science
    Smet, Kevin A. G.
    LEUKOS, 2020, 16 (03) : 179 - 201