Pygpc: A sensitivity and uncertainty analysis toolbox for Python']Python

被引:17
|
作者
Weise, Konstantin [1 ,2 ]
Possner, Lucas [3 ]
Mueller, Erik [3 ]
Gast, Richard [1 ]
Knoesche, Thomas R. [1 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Stephanstr 1a, D-04103 Leipzig, Germany
[2] Tech Univ Ilmenau, Adv Electromagnet Grp, Helmholtzpl 2, D-98693 Ilmenau, Germany
[3] Leipzig Univ Appl Sci, Inst Elect & Biomed Informat Technol, Wachterstr 13, D-04107 Leipzig, Germany
[4] Tech Univ Ilmenau, Inst Biomed Engn & Informat, Gustav Kirchhoff Str 2, D-98693 Ilmenau, Germany
关键词
Sensitivity analysis; Uncertainty analysis; Polynomial chaos; DYNAMIC-MODELS; ADAPTATION; EEG;
D O I
10.1016/j.softx.2020.100450
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non -intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient -based sensitivity measures and Sobol indices to reveal the relative importance of model parameters. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Pycobra: A Python']Python Toolbox for Ensemble Learning and Visualisation
    Guedj, Benjamin
    Desikan, Bhargav Srinivasa
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 18
  • [32] Natter: A Python']Python Natural Image Statistics Toolbox
    Sinz, Fabian H.
    Lies, Joern-Philipp
    Gerwinn, Sebastian
    Bethge, Matthias
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 61 (05): : 1 - 34
  • [33] bandicoot: a Python']Python Toolbox for Mobile Phone Metadata
    de Montjoye, Yves-Alexandre
    Rocher, Luc
    Pentland, Alex 'Sandy'
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [34] pyMechOpt: A Python']Python toolbox for optimizing of reaction mechanisms
    Di, Sihan
    Yu, Nanjia
    Han, Shutao
    He, Haodong
    SOFTWAREX, 2025, 29
  • [35] NeoAnalysis: a Python']Python-based toolbox for quick electrophysiological data processing and analysis
    Zhang, Bo
    Dai, Ji
    Zhang, Tao
    BIOMEDICAL ENGINEERING ONLINE, 2017, 16
  • [36] Fracture analyser: a Python']Python toolbox for the 2D analysis of fracture patterns
    Borghini, Lorenzo
    Striglio, Giulia
    Bacchiani, Giulio
    La Bruna, Vincenzo
    Balsamo, Fabrizio
    Bonini, Lorenzo
    Bezerra, Francisco H. R.
    ITALIAN JOURNAL OF GEOSCIENCES, 2024, 143 (02) : 314 - 328
  • [37] TFTenricher: a python']python toolbox for annotation enrichment analysis of transcription factor target genes
    Magnusson, Rasmus
    Lubovac-Pilav, Zelmina
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [38] Commissioning simulations tools based on python']python Accelerator Toolbox
    Liuzzo, S. M.
    Carmignani, N.
    Carver, L. R.
    Hoummi, L.
    Perron, T.
    White, S.
    Agapov, I.
    Boese, M.
    Hellert, T.
    Keil, J.
    Malina, L.
    Musa, E.
    Veglia, B.
    IPAC23 PROCEEDINGS, 2024, 2687
  • [39] PyLandslide: A Python']Python tool for landslide susceptibility mapping and uncertainty analysis
    Basheer, Mohammed
    Oommen, Thomas
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 177
  • [40] Shennong: A Python']Python toolbox for audio speech features extraction
    Bernard, Mathieu
    Poli, Maxime
    Karadayi, Julien
    Dupoux, Emmanuel
    BEHAVIOR RESEARCH METHODS, 2023, 55 (08) : 4489 - 4501