Pygpc: A sensitivity and uncertainty analysis toolbox for Python']Python

被引:17
|
作者
Weise, Konstantin [1 ,2 ]
Possner, Lucas [3 ]
Mueller, Erik [3 ]
Gast, Richard [1 ]
Knoesche, Thomas R. [1 ,4 ]
机构
[1] Max Planck Inst Human Cognit & Brain Sci, Methods & Dev Grp Brain Networks, Stephanstr 1a, D-04103 Leipzig, Germany
[2] Tech Univ Ilmenau, Adv Electromagnet Grp, Helmholtzpl 2, D-98693 Ilmenau, Germany
[3] Leipzig Univ Appl Sci, Inst Elect & Biomed Informat Technol, Wachterstr 13, D-04107 Leipzig, Germany
[4] Tech Univ Ilmenau, Inst Biomed Engn & Informat, Gustav Kirchhoff Str 2, D-98693 Ilmenau, Germany
关键词
Sensitivity analysis; Uncertainty analysis; Polynomial chaos; DYNAMIC-MODELS; ADAPTATION; EEG;
D O I
10.1016/j.softx.2020.100450
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a novel Python package for the uncertainty and sensitivity analysis of computational models. The mathematical background is based on the non -intrusive generalized polynomial chaos method allowing one to treat the investigated models as black box systems, without interfering with their legacy code. Pygpc is optimized to analyze models with complex and possibly discontinuous transfer functions that are computationally costly to evaluate. The toolbox determines the uncertainty of multiple quantities of interest in parallel, given the uncertainties of the system parameters and inputs. It also yields gradient -based sensitivity measures and Sobol indices to reveal the relative importance of model parameters. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Uncertainpy: A Python']Python Toolbox for Uncertainty Quantification and Sensitivity Analysis in Computational Neuroscience
    Tennoe, Simen
    Halnes, Geir
    Einevoll, Gaute T.
    FRONTIERS IN NEUROINFORMATICS, 2018, 12
  • [2] pyPPG: a Python']Python toolbox for comprehensive photoplethysmography signal analysis
    Goda, Marton A.
    Charlton, Peter H.
    Behar, Joachim A.
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [3] The Lompe code: A Python']Python toolbox for ionospheric data analysis
    Hovland, A. O.
    Laundal, K. M.
    Reistad, J. P.
    Hatch, S. M.
    Walker, S. J.
    Madelaire, M.
    Ohma, A.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2022, 9
  • [4] ZonalMetrics - a Python']Python toolbox for zonal landscape structure analysis
    Adamczyk, Joanna
    Tiede, Dirk
    COMPUTERS & GEOSCIENCES, 2017, 99 : 91 - 99
  • [5] GuPPy, a Python']Python toolbox for the analysis of fiber photometry data
    Sherathiya, Venus N.
    Schaid, Michael D.
    Seiler, Jillian L.
    Lopez, Gabriela C.
    Lerner, Talia N.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [6] ObsPy: A Python']Python Toolbox for Seismology
    Beyreuther, Moritz
    Barsch, Robert
    Krischer, Lion
    Megies, Tobias
    Behr, Yannik
    Wassermann, Joachim
    SEISMOLOGICAL RESEARCH LETTERS, 2010, 81 (03) : 530 - 533
  • [7] MTpy: A Python']Python toolbox for magnetotellurics
    Krieger, Lars
    Peacock, Jared R.
    COMPUTERS & GEOSCIENCES, 2014, 72 : 167 - 175
  • [8] Pyo, the Python']Python DSP toolbox
    Belanger, Olivier
    MM'16: PROCEEDINGS OF THE 2016 ACM MULTIMEDIA CONFERENCE, 2016, : 1214 - 1217
  • [9] PyCoTools: a Python']Python toolbox for COPASI
    Welsh, Ciaran M.
    Fullard, Nicola
    Proctor, Carole J.
    Martinez-Guimera, Alvaro
    Isfort, Robert J.
    Bascom, Charles C.
    Tasseff, Ryan
    Przyborski, Stefan A.
    Shanley, Daryl P.
    BIOINFORMATICS, 2018, 34 (21) : 3702 - 3710
  • [10] Py-Feat: Python']Python Facial Expression Analysis Toolbox
    Cheong, Jin Hyun
    Jolly, Eshin
    Xie, Tiankang
    Byrne, Sophie
    Kenney, Matthew
    Chang, Luke J. J.
    AFFECTIVE SCIENCE, 2023, 4 (04) : 781 - 796