Stochastic calculus for fractional Brownian motion. I: Theory

被引:0
|
作者
Duncan, TE [1 ]
Hu, YZ [1 ]
Pasik-Duncan, B [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes some of the results in [5] for a stochastic calculus for a fractional Brownian motion with the Hurst parameter in the interval (1/2, 1). Two stochastic integrals are defined with explicit expressions for their first two moments. Multiple and iterated integrals of a fractional Browinian motion are defined and various properties of these integrals axe given. A square integrable functional on a probability space of a fractional Brownian motion is expressed as an infinite series of multiple integrals.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 50 条
  • [31] Skorohod integration and stochastic calculus beyond the fractional Brownian scale
    Mocioalca, O
    Viens, F
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 222 (02) : 385 - 434
  • [32] Stochastic fractional differential inclusion driven by fractional Brownian motion
    Hachemi, Rahma Yasmina Moulay
    Guendouzi, Toufik
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2023, 31 (04) : 303 - 313
  • [33] Fractional stochastic Volterra equation perturbed by fractional Brownian motion
    Zhang, Yinghan
    Yang, Xiaoyuan
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 20 - 36
  • [34] Osmotic pressure and brownian motion.
    Duclaux, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1908, 147 : 131 - 134
  • [35] Stochastic Stratonovich calculus fBm for fractional Brownian motion with Hurst parameter less than 1/2
    Alòs, E
    León, JA
    Nualart, D
    TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (03): : 609 - 632
  • [36] Quantum Brownian motion.: II
    Gaioli, FH
    Alvarez, ETG
    Arbó, DG
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1999, 38 (01) : 183 - 198
  • [37] Quantum Brownian Motion. II
    Fabian H. Gaioli
    Edgardo T. Garcia Alvarez
    Diego G. Arbo
    International Journal of Theoretical Physics, 1999, 38 : 183 - 198
  • [38] Integrating Fractional Brownian Motion Arrivals into the Statistical Network Calculus
    Nikolaus, Paul
    Henningsen, Sebastian
    Beck, Michael
    Schmitt, Jens
    PROCEEDINGS OF THE 2018 INTERNATIONAL WORKSHOP ON NETWORK CALCULUS AND APPLICATIONS (NETCAL2018), VOL 2, 2018, : 37 - 42
  • [39] Stokes law and brownian motion.
    Perrin, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1908, 147 : 475 - 476
  • [40] BISMUT-ELWORTHY-LI FORMULA, SINGULAR SDES, FRACTIONAL BROWNIAN MOTION, MALLIAVIN CALCULUS, STOCHASTIC FLOWS, STOCHASTIC VOLATILITY
    Amine, Oussama
    Coffie, Emmanuel
    Harang, Fabian
    Proske, Frank
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2020, 18 (07) : 1863 - 1890