Stochastic calculus for fractional Brownian motion. I: Theory

被引:0
|
作者
Duncan, TE [1 ]
Hu, YZ [1 ]
Pasik-Duncan, B [1 ]
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes some of the results in [5] for a stochastic calculus for a fractional Brownian motion with the Hurst parameter in the interval (1/2, 1). Two stochastic integrals are defined with explicit expressions for their first two moments. Multiple and iterated integrals of a fractional Browinian motion are defined and various properties of these integrals axe given. A square integrable functional on a probability space of a fractional Brownian motion is expressed as an infinite series of multiple integrals.
引用
收藏
页码:212 / 216
页数:5
相关论文
共 50 条
  • [21] Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2
    Alòs, E
    Mazet, O
    Nualart, D
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) : 121 - 139
  • [22] Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
    Pei, Bin
    Xu, Yong
    Wu, Jiang-Lun
    APPLIED MATHEMATICS LETTERS, 2020, 100
  • [23] On stochastic calculus with respect to q-Brownian motion
    Deya, Aurelien
    Schott, Rene
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (04) : 1047 - 1075
  • [24] Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
    Guerra, Joao
    Nualart, David
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) : 1053 - 1075
  • [25] Stochastic evolution equations with fractional Brownian motion
    S. Tindel
    C.A. Tudor
    F. Viens
    Probability Theory and Related Fields, 2003, 127 : 186 - 204
  • [26] Stochastic evolution equations with fractional Brownian motion
    Tindel, S
    Tudor, CA
    Viens, E
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) : 186 - 204
  • [27] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    Montseny, G
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2003, 39 (01): : 27 - 68
  • [28] Stochastic integration with respect to fractional Brownian motion
    Carmona, P
    Coutin, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03): : 231 - 236
  • [29] Stochastic integration for tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (07) : 2363 - 2387
  • [30] Universal Algorithm for Identification of Fractional Brownian Motion. A Case of Telomere Subdiffusion
    Burnecki, Krzysztof
    Kepten, Eldad
    Janczura, Joanna
    Bronshtein, Irena
    Garini, Yuval
    Weron, Aleksander
    BIOPHYSICAL JOURNAL, 2012, 103 (09) : 1839 - 1847