Effect of laser treatment on morphology and corrosion behaviour of the plasma electrolytic oxidation coatings developed on aluminized steel

被引:17
|
作者
Amruthaluru, Saikiran [1 ]
Sampatirao, Hariprasad [1 ]
Palanivel, Manojkumar [1 ]
Lingamaneni, Rama Krishna [2 ]
Nagumothu, Rameshbabu [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Int Adv Res Ctr Powder Met & New Mat ARCI, Ctr Engn Coatings, Hyderabad 500005, Telangana, India
来源
关键词
Aluminized steel; Plasma electrolytic oxidation; Laser surface modification; Laser fluency; Corrosion resistance; SUPERHYDROPHOBIC SURFACES; NANOCOMPOSITE COATINGS; CARBON-STEEL; RESISTANCE; MICROSTRUCTURE; FABRICATION; FILMS; NACL;
D O I
10.1016/j.surfcoat.2020.125888
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present study focusses on laser surface modification of the plasma electrolytic oxidation (PEO) coatings developed on aluminized steel. The effect of varying laser fluency on the surface morphology and the corrosion behaviour of the PEO coatings was studied. Three different laser fluencies of 38.16, 53.42 and 68.69 J/cm(2), corresponding to the 25%, 35% and 45% of the maximum power (60 W) were employed for the surface alteration. Laser treatment of the PEO coatings at lower and intermediate fluencies resulted in the development of a hydrophobic surface, thereby improving the corrosion resistance, whereas the laser treatment at higher fluency has resulted in the hydrophilic surface, with reduced corrosion resistance. The PEO sample laser-treated with intermediate fluency has produced a superhydrophobic surface with a contact angle of 153.2 degrees. Potentiodynamic polarization (PDP) studies revealed that the PEO coated aluminized steel sample, laser-treated with intermediate fluency, exhibited superior corrosion resistance with a corrosion current density (i(corr)) of 1.21E - 6 mA/cm(2) which is 10(4) times lower than the aluminized steel.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Corrosion resistance of austenitic stainless steel using cathodic plasma electrolytic oxidation
    Heo, Jun
    Lee, Jaewoo
    Kim, Sungwoo
    Alfantazi, Akram
    Cho, Sung Oh.
    SURFACE & COATINGS TECHNOLOGY, 2023, 462
  • [32] Corrosion behaviour of mild steel beneath porous plasma sprayed coatings
    Costa, V
    Dias, AM
    Rangel, CM
    Cruz, LF
    BRITISH CORROSION JOURNAL, 1996, 31 (03): : 227 - 232
  • [33] Role of graphene additive on wear and electrochemical corrosion behaviour of plasma electrolytic oxidation (PEO) coatings on Mg-MWCNT nanocomposite
    Aydin, Fatih
    Ayday, Aysun
    Turan, M. Emre
    Zengin, Huseyin
    SURFACE ENGINEERING, 2020, 36 (08) : 791 - 799
  • [34] Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation
    Yang, Junjie
    Lu, Xiaopeng
    Blawert, Carsten
    Di, Shichun
    Zheludkevich, Mikhail L.
    SURFACE & COATINGS TECHNOLOGY, 2017, 319 : 359 - 369
  • [35] Impedance monitoring of corrosion degradation of plasma electrolytic oxidation coatings (PEO) on magnesium alloy
    Gawel, L.
    Nieuzyla, L.
    Nawrat, G.
    Darowicki, K.
    Slepski, P.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 722 : 406 - 413
  • [36] Corrosion Inhibitor-Modified Plasma Electrolytic Oxidation Coatings on 6061 Aluminum Alloy
    Sowa, Maciej
    Wala, Marta
    Blacha-Grzechnik, Agata
    Maciej, Artur
    Kazek-Kesik, Alicja
    Stolarczyk, Agnieszka
    Simka, Wojciech
    MATERIALS, 2021, 14 (03) : 1 - 18
  • [37] Influence of stoichiometry on the corrosion response of titanium oxide coatings produced by plasma electrolytic oxidation
    Casanova, L.
    Arosio, Mattia
    Hashemi, Mohammad Taghi
    Pedeferri, M.
    Botton, G. A.
    Ormellese, M.
    CORROSION SCIENCE, 2022, 203
  • [38] The Electrochemical Corrosion Behavior of Plasma Electrolytic Oxidation Coatings Fabricated on Aluminum in Silicate Electrolyte
    Yang, Zhong
    Wang, Rui-qiang
    Liu, Chen
    Wu, Ye-kang
    Wang, Dong-dong
    Liu, Xin-tong
    Zhang, Xu-zhen
    Wu, Guo-rui
    Shen, De-jiu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2019, 28 (06) : 3652 - 3660
  • [39] Corrosion Evaluation of Zirconium Doped Oxide Coatings on Aluminum Formed by Plasma Electrolytic Oxidation
    Bajat, Jelena B.
    Miskovic-Stankovic, Vesna
    Vasilic, Rastko
    Stojadinovic, Stevan
    ACTA CHIMICA SLOVENICA, 2014, 61 (02) : 308 - 315
  • [40] Corrosion-resistant coatings on tantalum formed by plasma electrolytic oxidation in phosphate electrolyte
    Cheng Y.-L.
    Zhang Q.-H.
    Cheng Y.-L.
    Surface Technology, 2021, 50 (06): : 32 - 40