Effect of laser treatment on morphology and corrosion behaviour of the plasma electrolytic oxidation coatings developed on aluminized steel

被引:17
|
作者
Amruthaluru, Saikiran [1 ]
Sampatirao, Hariprasad [1 ]
Palanivel, Manojkumar [1 ]
Lingamaneni, Rama Krishna [2 ]
Nagumothu, Rameshbabu [1 ]
机构
[1] Natl Inst Technol, Dept Met & Mat Engn, Tiruchirappalli 620015, Tamil Nadu, India
[2] Int Adv Res Ctr Powder Met & New Mat ARCI, Ctr Engn Coatings, Hyderabad 500005, Telangana, India
来源
关键词
Aluminized steel; Plasma electrolytic oxidation; Laser surface modification; Laser fluency; Corrosion resistance; SUPERHYDROPHOBIC SURFACES; NANOCOMPOSITE COATINGS; CARBON-STEEL; RESISTANCE; MICROSTRUCTURE; FABRICATION; FILMS; NACL;
D O I
10.1016/j.surfcoat.2020.125888
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present study focusses on laser surface modification of the plasma electrolytic oxidation (PEO) coatings developed on aluminized steel. The effect of varying laser fluency on the surface morphology and the corrosion behaviour of the PEO coatings was studied. Three different laser fluencies of 38.16, 53.42 and 68.69 J/cm(2), corresponding to the 25%, 35% and 45% of the maximum power (60 W) were employed for the surface alteration. Laser treatment of the PEO coatings at lower and intermediate fluencies resulted in the development of a hydrophobic surface, thereby improving the corrosion resistance, whereas the laser treatment at higher fluency has resulted in the hydrophilic surface, with reduced corrosion resistance. The PEO sample laser-treated with intermediate fluency has produced a superhydrophobic surface with a contact angle of 153.2 degrees. Potentiodynamic polarization (PDP) studies revealed that the PEO coated aluminized steel sample, laser-treated with intermediate fluency, exhibited superior corrosion resistance with a corrosion current density (i(corr)) of 1.21E - 6 mA/cm(2) which is 10(4) times lower than the aluminized steel.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Plasma electrolytic oxidation (PEO) coatings for enhance the corrosion resistance of aluminum alloys
    Incremento della resistenza a corrosione di leghe di alluminio mediante rivestimenti plasma electrolytic oxidation
    1600, Associazione Italiana di Metallurgia (109): : 7 - 8
  • [22] Plasma electrolytic oxidation (PEO) coatings for enhance the corrosion resistance of aluminum alloys
    Pezzato, L.
    Lago, M.
    Brunelli, K.
    Magrini, M.
    Dabala, M.
    METALLURGIA ITALIANA, 2017, (7-8): : 95 - 98
  • [23] Formation mechanism, corrosion behaviour and biological property of hydroxyapatite/TiO2 coatings fabricated by plasma electrolytic oxidation
    Zhang, Xinxin
    Wu, Yule
    Lv, You
    Yu, Yang
    Dong, Zehua
    SURFACE & COATINGS TECHNOLOGY, 2020, 386
  • [24] Influence of glycerol on plasma electrolytic oxidation coatings evolution and on corrosion behaviour of coated AM50 magnesium alloy
    Jangde, Ashutosh
    Kumar, S.
    Blawert, C.
    CORROSION SCIENCE, 2019, 157 : 220 - 246
  • [25] Hydrothermal Sealing of Plasma Electrolytic Oxidation Coatings Developed on AZ31 Alloy
    L. Toro
    A. A Zuleta
    E. Correa
    F. Echeverría
    Journal of Materials Engineering and Performance, 2022, 31 : 9768 - 9776
  • [26] Hydrothermal Sealing of Plasma Electrolytic Oxidation Coatings Developed on AZ31 Alloy
    Toro, L.
    Zuleta, A. A.
    Correa, E.
    Echeverria, F.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (12) : 9768 - 9776
  • [27] Morphology and corrosion resistance of hybrid plasma electrolytic oxidation on CP-Ti
    Nabavi, H. Fakhr
    Aliofkhazraei, M.
    Rouhaghdam, A. Sabour
    SURFACE & COATINGS TECHNOLOGY, 2017, 322 : 59 - 69
  • [28] Corrosion behaviour of a magnesium matrix composite with a silicate plasma electrolytic oxidation coating
    Arrabal, R.
    Pardo, A.
    Merino, M. C.
    Mohedano, M.
    Casajus, P.
    Matykina, E.
    Skeldon, P.
    Thompson, G. E.
    CORROSION SCIENCE, 2010, 52 (11) : 3738 - 3749
  • [29] Effect of Treatment Temperature on Titania Coating Microstructures and Corrosion Properties by Hybrid Plasma Electrolytic Oxidation Treatment
    Wang, Hongyuan
    Wu, Lei
    Qi, Long
    Gao, Han
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 34 (4) : 2748 - 2754
  • [30] Effect of microstructure and porosity of AlSi10Mg alloy produced by selective laser melting on the corrosion properties of plasma electrolytic oxidation coatings
    Pezzato, L.
    Dabala, M.
    Gross, Silvia
    Brunelli, K.
    SURFACE & COATINGS TECHNOLOGY, 2020, 404