Extreme value statistics for novelty detection in biomedical data processing

被引:62
|
作者
Roberts, SJ [1 ]
机构
[1] Univ Oxford, Dept Engn Sci, Robot Res Grp, Oxford OX1 3PJ, England
关键词
D O I
10.1049/ip-smt:20000841
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Extreme value theory (EVT) is a branch of statistics which concerns the distributions of data of unusually low or high value i.e. in the tails of some distribution. These extremal points are important in many applications as they represent the outlying regions of normal events against which we may wish to define novel events. The use of such novelty detection approaches is useful for analysis of data for which few exemplars of some important class exist, for example in medical screening. It is shown that a principled approach to the issue of novelty detection may be taken using extreme value statistics.
引用
收藏
页码:363 / 367
页数:5
相关论文
共 50 条
  • [31] EXTREME VALUE STATISTICS AND RELIABILITY APPLICATIONS
    SMITH, RL
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 1986, 15 (03) : 161 - 170
  • [32] Application of frequency domain ARX models and extreme value statistics to damage detection
    Fasel, TR
    Sohn, H
    Farrar, CR
    SMART STRUCTURES AND MATERIALS 2003: SMART SYSTEMS AND NONDESTRUCTIVE EVALUATION FOR CIVIL INFRASTRUCTURES, 2003, 5057 : 145 - 156
  • [33] Extreme value statistics for censored data with heavy tails under competing risks
    Worms, Julien
    Worms, Rym
    METRIKA, 2018, 81 (07) : 849 - 889
  • [34] Extreme value statistics for censored data with heavy tails under competing risks
    Julien Worms
    Rym Worms
    Metrika, 2018, 81 : 849 - 889
  • [35] Analysis of the Extremes of SNR Time Series Data Using Extreme Value Statistics
    Nevin, Josh W.
    Savory, Seb J.
    2021 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXPOSITION (OFC), 2021,
  • [36] Novelty detection in data streams
    Faria, Elaine R.
    Goncalves, Isabel J. C. R.
    de Carvalho, Andre C. P. L. F.
    Gama, Joao
    ARTIFICIAL INTELLIGENCE REVIEW, 2016, 45 (02) : 235 - 269
  • [37] Novelty detection in data streams
    Elaine R. Faria
    Isabel J. C. R. Gonçalves
    André C. P. L. F. de Carvalho
    João Gama
    Artificial Intelligence Review, 2016, 45 : 235 - 269
  • [38] On processing extreme data
    Petcu, Dana
    Iuhasz, Gabriel
    Pop, Daniel
    Talia, Domenico
    Carretero, Jesus
    Prodan, Radu
    Fahringer, Thomas
    Grasso, Ivan
    Doallo, Ramón
    Martín, María J.
    Fraguela, Basilio B.
    Trobec, Roman
    Depolli, Matjaž
    Rodriguez, Francisco Almeida
    De Sande, Francisco
    Da Costa, Georges
    Pierson, Jean-Marc
    Anastasiadis, Stergios
    Bartzokas, Aristides
    Lolis, Christos
    Gonçalves, Pedro
    Brito, Fabrice
    Brown, Nick
    Scalable Computing, 2015, 16 (04): : 467 - 490
  • [39] ON PROCESSING EXTREME DATA
    Petcu, Dana
    Iuhasz, Gabriel
    Pop, Daniel
    Talia, Domenico
    Carretero, Jesus
    Prodan, Radu
    Fahringer, Thomas
    Grasso, Ivan
    Doallo, Ramon
    Martin, Maria J.
    Fraguela, Basilio B.
    Trobec, Roman
    Depolli, Matjaz
    Rodriguez, Francisco Almeida
    De Sande, Francisco
    Da Costa, Georges
    Pierson, Jean-Marc
    Anastasiadis, Stergios
    Bartzokas, Aristides
    Lolis, Christos
    Goncalves, Pedro
    Brito, Fabrice
    Brown, Nick
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2015, 16 (04): : 467 - 489
  • [40] Extreme value statistics in Raman fiber lasers
    Churkin, Dmitry V.
    Gorbunov, Oleg A.
    Smirnov, Sergey V.
    OPTICS LETTERS, 2011, 36 (18) : 3617 - 3619