On processing extreme data

被引:0
|
作者
Petcu, Dana [1 ]
Iuhasz, Gabriel [1 ]
Pop, Daniel [1 ]
Talia, Domenico [2 ]
Carretero, Jesus [3 ]
Prodan, Radu [3 ]
Fahringer, Thomas [3 ]
Grasso, Ivan [4 ]
Doallo, Ramón [4 ]
Martín, María J. [4 ]
Fraguela, Basilio B. [5 ]
Trobec, Roman [5 ]
Depolli, Matjaž [6 ]
Rodriguez, Francisco Almeida [6 ]
De Sande, Francisco [7 ]
Da Costa, Georges [7 ]
Pierson, Jean-Marc [8 ]
Anastasiadis, Stergios [8 ]
Bartzokas, Aristides [8 ]
Lolis, Christos [9 ]
Gonçalves, Pedro [9 ]
Brito, Fabrice [10 ]
Brown, Nick [11 ]
机构
[1] West University of Timişoara, Romania
[2] University of Calabria, Italy
[3] University Carlos III of Madrid, Spain
[4] University of Innsbruck, Austria
[5] University of Coruña, Spain
[6] Jozef Stefan Institute, Slovenia
[7] University of La Laguna, Spain
[8] IRIT, University of Toulouse, France
[9] University of Ioannina, Greece
[10] Terradue, Italy
[11] EPCC, University of Edinburgh, Scotland, United Kingdom
来源
Scalable Computing | 2015年 / 16卷 / 04期
关键词
Exascale - Extreme computing - Extreme data - Parallel programming model - Scalable data analysis;
D O I
10.12694/scpe.v16i4.1134
中图分类号
学科分类号
摘要
Extreme Data is an incarnation of Big Data concept distinguished by the massive amounts of data that must be queried, communicated and analyzed in near real-time by using a very large number of memory or storage elements and exascale computing systems. Immediate examples are the scientific data produced at a rate of hundreds of gigabits-per-second that must be stored, filtered and analyzed, the millions of images per day that must be analyzed in parallel, the one billion of social data posts queried in real-time on an in-memory components database. Traditional disks or commercial storage nowadays cannot handle the extreme scale of such application data. Following the need of improvement of current concepts and technologies, we focus in this paper on the needs of data intensive applications running on systems composed of up to millions of computing elements (exascale systems). We propose in this paper a methodology to advance the state-of-the-art. The starting point is the definition of new programming paradigms, APIs, runtime tools and methodologies for expressing data-intensive tasks on exascale systems. This will pave the way for the exploitation of massive parallelism over a simplified model of the system architecture, thus promoting high performance and efficiency, offering powerful operations and mechanisms for processing extreme data sources at high speed and/or real time.
引用
收藏
页码:467 / 490
相关论文
共 50 条
  • [1] ON PROCESSING EXTREME DATA
    Petcu, Dana
    Iuhasz, Gabriel
    Pop, Daniel
    Talia, Domenico
    Carretero, Jesus
    Prodan, Radu
    Fahringer, Thomas
    Grasso, Ivan
    Doallo, Ramon
    Martin, Maria J.
    Fraguela, Basilio B.
    Trobec, Roman
    Depolli, Matjaz
    Rodriguez, Francisco Almeida
    De Sande, Francisco
    Da Costa, Georges
    Pierson, Jean-Marc
    Anastasiadis, Stergios
    Bartzokas, Aristides
    Lolis, Christos
    Goncalves, Pedro
    Brito, Fabrice
    Brown, Nick
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2015, 16 (04): : 467 - 489
  • [2] Exascale programing models for extreme data processing
    Garcia-Blas, Javier
    Carretero, Jesus
    PROCEEDINGS OF THE 20TH ACM INTERNATIONAL CONFERENCE ON COMPUTING FRONTIERS 2023, CF 2023, 2023, : 279 - 284
  • [3] Extreme value statistics for novelty detection in biomedical data processing
    Roberts, SJ
    IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 2000, 147 (06) : 363 - 367
  • [4] ActiveSpaces: Exploring dynamic code deployment for extreme scale data processing
    Docan, Ciprian
    Zhang, Fan
    Jin, Tong
    Bui, Hoang
    Sun, Qian
    Cummings, Julian
    Podhorszki, Norbert
    Klasky, Scott
    Parashar, Manish
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2015, 27 (14): : 3724 - 3745
  • [5] Big Data Processing: Scalability with Extreme Single-Node Performance
    Govindaraju, Venkatraman
    Idicula, Sam
    Agrawal, Sandeep
    Vardarajan, Venkatanathan
    Raghavan, Arun
    Wen, Jarod
    Balkesen, Cagri
    Giannikis, Georgios
    Agarwal, Nipun
    Sedlar, Eric
    2017 IEEE 6TH INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS 2017), 2017, : 129 - 136
  • [6] Quality Control Methods in Accelerometer Data Processing: Identifying Extreme Counts
    Rich, Carly
    Geraci, Marco
    Griffiths, Lucy
    Sera, Francesco
    Dezateux, Carol
    Cortina-Borja, Mario
    PLOS ONE, 2014, 9 (01):
  • [7] Data processing of GNSS observations of the GEONAS network effects of extreme meteorological conditions
    Gracova, Milada
    Mantlik, Frantisek
    Schenk, Vladimir
    Schenkova, Zdenka
    ACTA GEODYNAMICA ET GEOMATERIALIA, 2007, 4 (04): : 153 - +
  • [8] Framework for prioritizing geospatial data processing tasks during extreme weather events
    Hu, Xuan
    Gong, Jie
    ADVANCED ENGINEERING INFORMATICS, 2019, 39 : 157 - 169
  • [9] Early Detection of Extreme Storm Tide Events Using Multimodal Data Processing
    Barros, Marcel
    Pinto, Andressa
    Monroy, Andres
    Moreno, Felipe
    Coelho, Jefferson
    Silva, Aldomar Pietro
    Deberaldini Netto, Caio Fabricio
    Leite, Jose Roberto
    Mathias, Marlon
    Tannuri, Eduardo
    Jordao, Artur
    Gomi, Edson
    Cozman, Fabio
    Dottori, Marcelo
    Costa, Anna Helena Reali
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 20, 2024, : 21923 - 21931
  • [10] Extreme data
    1600, IEEE Computer Society (16):