On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian

被引:1
|
作者
Ergun, Ebru [1 ]
Bairamov, Elgiz [2 ]
机构
[1] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey
[2] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
Discrete system; Non-Hermiticity; Jacobi matrix; Eigenvalue;
D O I
10.1007/s10910-010-9767-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we are concerned with a 3 x 3 complex matrix Jacobi (tri-diagonal matrix) arised from a non-Hermitian discrete quantum system. Necessary and sufficient conditions for reality of the eigenvalues of the matrix in question are established.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 50 条
  • [41] Eigenvalues for a class of non-Hermitian tetradiagonal Toeplitz matrices
    Bogoya, Manuel
    Gasca, Juanita
    Grudsky, Sergei M.
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 441 - 477
  • [42] COMPUTING COMPLEX EIGENVALUES OF LARGE NON-HERMITIAN MATRICES
    KERNER, W
    LERBINGER, K
    STEUERWALD, J
    COMPUTER PHYSICS COMMUNICATIONS, 1985, 38 (01) : 27 - 37
  • [43] Level statistics of real eigenvalues in non-Hermitian systems
    Xiao, Zhenyu
    Kawabata, Kohei
    Luo, Xunlong
    Ohtsuki, Tomi
    Shindou, Ryuichi
    PHYSICAL REVIEW RESEARCH, 2022, 4 (04):
  • [44] Equivalent Hermitian Hamiltonian for the non-Hermitian -x4 potential
    Jones, HF
    Mateo, J
    PHYSICAL REVIEW D, 2006, 73 (08):
  • [45] Waxman's algorithm for non-Hermitian Hamiltonian operators
    Chamberlain, S. R.
    Tucker, J. G.
    Conroy, J. M.
    Miller, H. G.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2018, 2 (02):
  • [47] Foldy-Wouthuysen transformation for a non-Hermitian Hamiltonian
    Alexandre, Jean
    4TH SYMPOSIUM ON PROSPECTS IN THE PHYSICS OF DISCRETE SYMMETRIES (DISCRETE2014), 2015, 631
  • [48] Boundary condition independence of non-Hermitian Hamiltonian dynamics
    Mao, Liang
    Deng, Tianshu
    Zhang, Pengfei
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [50] Anti-PT symmetry for a non-Hermitian Hamiltonian
    Maamache, Mustapha
    Kheniche, Linda
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):