On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian

被引:1
|
作者
Ergun, Ebru [1 ]
Bairamov, Elgiz [2 ]
机构
[1] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey
[2] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
Discrete system; Non-Hermiticity; Jacobi matrix; Eigenvalue;
D O I
10.1007/s10910-010-9767-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we are concerned with a 3 x 3 complex matrix Jacobi (tri-diagonal matrix) arised from a non-Hermitian discrete quantum system. Necessary and sufficient conditions for reality of the eigenvalues of the matrix in question are established.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 50 条
  • [31] Geometric phase for a periodic non-Hermitian Hamiltonian
    Choutri, H
    Maamache, M
    Menouar, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2002, 40 (02) : 358 - 360
  • [32] On the Hylleraas functional for a non-Hermitian unperturbed Hamiltonian
    Mayer, I.
    Molecular Physics, 89 (02):
  • [33] Quantum simulation of a qubit with a non-Hermitian Hamiltonian
    Jebraeilli, Anastashia
    Geller, Michael R.
    PHYSICAL REVIEW A, 2025, 111 (03)
  • [34] QUANTUM-MECHANICS WITH A NON-HERMITIAN HAMILTONIAN
    GRIGORENKO, AN
    PHYSICS LETTERS A, 1993, 172 (05) : 350 - 354
  • [35] Non-Hermitian Hamiltonian deformations in quantum mechanics
    Matsoukas-Roubeas, Apollonas S.
    Roccati, Federico
    Cornelius, Julien
    Xu, Zhenyu
    Chenu, Aurelia
    del Campo, Adolfo
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (01)
  • [36] Transition elements for a non-Hermitian quadratic Hamiltonian
    Swanson, MS
    JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (02) : 585 - 601
  • [37] GEOMETRICAL PHASE FACTOR FOR A NON-HERMITIAN HAMILTONIAN
    MINIATURA, C
    SIRE, C
    BAUDON, J
    BELLISSARD, J
    EUROPHYSICS LETTERS, 1990, 13 (03): : 199 - 203
  • [38] Distribution of eigenvalues of non-Hermitian random XXZ model
    Chihara, K
    Kusakabe, K
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (145): : 225 - 228
  • [39] Non-Hermitian topological systems with eigenvalues that are always real
    Long, Yang
    Xue, Haoran
    Zhang, Baile
    PHYSICAL REVIEW B, 2022, 105 (10)
  • [40] Eigenvalues of large chiral non-Hermitian random matrices
    Chang, Shuhua
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (01)