On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian

被引:1
|
作者
Ergun, Ebru [1 ]
Bairamov, Elgiz [2 ]
机构
[1] Ankara Univ, Dept Phys, TR-06100 Ankara, Turkey
[2] Ankara Univ, Dept Math, TR-06100 Ankara, Turkey
关键词
Discrete system; Non-Hermiticity; Jacobi matrix; Eigenvalue;
D O I
10.1007/s10910-010-9767-2
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we are concerned with a 3 x 3 complex matrix Jacobi (tri-diagonal matrix) arised from a non-Hermitian discrete quantum system. Necessary and sufficient conditions for reality of the eigenvalues of the matrix in question are established.
引用
收藏
页码:609 / 617
页数:9
相关论文
共 50 条
  • [1] On the eigenvalues of a 3 by 3 non-Hermitian Hamiltonian
    Ebru Ergun
    Elgiz Bairamov
    Journal of Mathematical Chemistry, 2011, 49 : 609 - 617
  • [2] On the Eigenvalues of a Non-Hermitian Hamiltonian
    Ergun, Ebru
    DYNAMICAL SYSTEMS AND METHODS, 2012, : 245 - +
  • [3] Eigenvalues and eigenfunctions of the perturbed non-Hermitian SSH Hamiltonian with PT symmetry
    Tinyukova, T. S.
    Chuburin, Yu P.
    IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2023, 62 : 87 - 95
  • [4] Zero eigenvalues of a photon blockade induced by a non-Hermitian Hamiltonian with a gain cavity
    Zhou, Y. H.
    Shen, H. Z.
    Zhang, X. Y.
    Yi, X. X.
    PHYSICAL REVIEW A, 2018, 97 (04)
  • [5] Complex integrals for 3-dimensional non-hermitian Hamiltonian systems
    Bhardwaj, S. B.
    Singh, Ram Mehar
    Sharma, Kushal
    Rani, Richa
    Chand, Fakir
    CHINESE JOURNAL OF PHYSICS, 2017, 55 (04) : 1170 - 1180
  • [6] Eigenvalues of non-Hermitian Fibonacci Hamiltonians
    Domínguez-Adame, F
    PHYSICA B-CONDENSED MATTER, 2001, 307 (1-4) : 247 - 250
  • [7] APPROXIMATE EIGENVALUES AND NON-HERMITIAN OPERATORS
    LANDAU, HJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A679 - A679
  • [8] Non-Hermitian β-ensemble with real eigenvalues
    Bohigas, O.
    Pato, M. P.
    AIP ADVANCES, 2013, 3 (03):
  • [9] Non-Hermitian potentials and real eigenvalues
    Hook, Daniel W.
    ANNALEN DER PHYSIK, 2012, 524 (6-7) : 106 - 107
  • [10] Real eigenvalues of non-hermitian operators
    Surjan, Peter R.
    Szabados, Agnes
    Gombas, Andras
    MOLECULAR PHYSICS, 2024, 122 (15-16)