adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection

被引:71
|
作者
Wang, Xuhong [1 ]
Du, Ying [1 ]
Lin, Shijie [2 ]
Cui, Ping [1 ]
Shen, Yuntian [3 ]
Yang, Yupu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Wuhan Univ, Wuhan, Peoples R China
[3] Univ Calif Davis, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
Anomaly detection; Outlier detection; Novelty detection; Deep generative model; Variational autoencoder; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.knosys.2019.105187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep generative models have become increasingly popular in unsupervised anomaly detection. However, deep generative models aim at recovering the data distribution rather than detecting anomalies. Moreover, deep generative models have the risk of overfitting training samples, which has disastrous effects on anomaly detection performance. To solve the above two problems, we propose a self-adversarial variational autoencoder (adVAE) with a Gaussian anomaly prior assumption. We assume that both the anomalous and the normal prior distribution are Gaussian and have overlaps in the latent space. Therefore, a Gaussian transformer net T is trained to synthesize anomalous but near-normal latent variables. Keeping the original training objective of a variational autoencoder, a generator G tries to distinguish between the normal latent variables encoded by E and the anomalous latent variables synthesized by T, and the encoder E is trained to discriminate whether the output of G is real. These new objectives we added not only give both G and E the ability to discriminate, but also become an additional regularization mechanism to prevent overfitting. Compared with other competitive methods, the proposed model achieves significant improvements in extensive experiments. The employed datasets and our model are available in a Github repository. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Variational Autoencoder for Anomaly Detection in Event Data in Online Process Mining
    Krajsic, Philippe
    Franczyk, Bogdan
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS (ICEIS 2021), VOL 1, 2021, : 567 - 574
  • [42] Unsupervised dam anomaly detection with spatial-temporal variational autoencoder
    Shu, Xiaosong
    Bao, Tengfei
    Zhou, Yuhang
    Xu, Ruichen
    Li, Yangtao
    Zhang, Kang
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (01): : 39 - 55
  • [43] Anomaly Detection in Asset Degradation Process Using Variational Autoencoder and Explanations
    Jakubowski, Jakub
    Stanisz, Przemyslaw
    Bobek, Szymon
    Nalepa, Grzegorz J.
    SENSORS, 2022, 22 (01)
  • [44] Anomaly Detection Method with Multivariable Coupling Network and Variational Graph Autoencoder
    Zhang, Cong
    Zhu, Yongsheng
    Yang, Minyan
    Ren, Zhijun
    Yan, Ke
    Hong, Jun
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (04): : 20 - 28
  • [45] Variational AutoEncoder-Based Anomaly Detection Scheme for Load Forecasting
    Park, Sungwoo
    Jung, Seungmin
    Hwang, Eenjun
    Rho, Seungmin
    ADVANCES IN ARTIFICIAL INTELLIGENCE AND APPLIED COGNITIVE COMPUTING, 2021, : 833 - 839
  • [46] Semisupervised anomaly detection of multivariate time series based on a variational autoencoder
    Chen, Ningjiang
    Tu, Huan
    Duan, Xiaoyan
    Hu, Liangqing
    Guo, Chengxiang
    APPLIED INTELLIGENCE, 2023, 53 (05) : 6074 - 6098
  • [47] Knowledge Graphs (KG) Assisted Variational Autoencoder (VAE) for Large-Scale Anomaly and Event Detection
    Zhao, Ying
    SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2024, PT IV, 2025, 15214 : 199 - 214
  • [48] Autoencoder for Network Anomaly Detection
    Park, Won
    Ferland, Nicolas
    Sun, Wenting
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2022), 2022,
  • [49] Autoencoder-Like Knowledge Distillation Network for Anomaly Detection
    Xu, Caie
    Wang, Bingyan
    Ni, Dandan
    Gan, Jin
    Wu, Mingyang
    Zhou, Wujie
    IEEE ACCESS, 2023, 11 : 100622 - 100631
  • [50] IoT Anomaly Detection Based on Autoencoder and Bayesian Gaussian Mixture Model
    Hou, Yunyun
    He, Ruiyu
    Dong, Jie
    Yang, Yangrui
    Ma, Wei
    ELECTRONICS, 2022, 11 (20)