adVAE: A self-adversarial variational autoencoder with Gaussian anomaly prior knowledge for anomaly detection

被引:71
|
作者
Wang, Xuhong [1 ]
Du, Ying [1 ]
Lin, Shijie [2 ]
Cui, Ping [1 ]
Shen, Yuntian [3 ]
Yang, Yupu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] Wuhan Univ, Wuhan, Peoples R China
[3] Univ Calif Davis, Davis, CA 95616 USA
基金
中国国家自然科学基金;
关键词
Anomaly detection; Outlier detection; Novelty detection; Deep generative model; Variational autoencoder; PRINCIPAL COMPONENT ANALYSIS;
D O I
10.1016/j.knosys.2019.105187
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep generative models have become increasingly popular in unsupervised anomaly detection. However, deep generative models aim at recovering the data distribution rather than detecting anomalies. Moreover, deep generative models have the risk of overfitting training samples, which has disastrous effects on anomaly detection performance. To solve the above two problems, we propose a self-adversarial variational autoencoder (adVAE) with a Gaussian anomaly prior assumption. We assume that both the anomalous and the normal prior distribution are Gaussian and have overlaps in the latent space. Therefore, a Gaussian transformer net T is trained to synthesize anomalous but near-normal latent variables. Keeping the original training objective of a variational autoencoder, a generator G tries to distinguish between the normal latent variables encoded by E and the anomalous latent variables synthesized by T, and the encoder E is trained to discriminate whether the output of G is real. These new objectives we added not only give both G and E the ability to discriminate, but also become an additional regularization mechanism to prevent overfitting. Compared with other competitive methods, the proposed model achieves significant improvements in extensive experiments. The employed datasets and our model are available in a Github repository. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hyperspectral anomaly detection with self-supervised anomaly prior
    Liu, Yidan
    Jiang, Kai
    Xie, Weiying
    Zhang, Jiaqing
    Li, Yunsong
    Fang, Leyuan
    NEURAL NETWORKS, 2025, 187
  • [22] Unsupervised Anomaly detection of LM Guide Using Variational Autoencoder
    Kim, Min Su
    Yun, Jong Pil
    Lee, Suwoong
    Park, PooGyeon
    2019 11TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2019,
  • [23] Anomaly Detection Method for MVB Network Based on Variational Autoencoder
    Yang Y.
    Wang L.
    Chen H.
    Wang C.
    Tiedao Xuebao/Journal of the China Railway Society, 2022, 44 (01): : 71 - 78
  • [24] VESC: a new variational autoencoder based model for anomaly detection
    Zhang, Chunkai
    Wang, Xinyu
    Zhang, Jiahua
    Li, Shaocong
    Zhang, Hanyu
    Liu, Chuanyi
    Han, Peiyi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 683 - 696
  • [25] Improved Variational Autoencoder Anomaly Detection in Time Series Data
    Yokkampon, Umaporn
    Chumkamon, Sakmongkon
    Mowshowitz, Abbe
    Fujisawa, Ryusuke
    Hayashi, Eiji
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 82 - 87
  • [26] Hyperspectral Anomaly Detection Based on Graph Regularized Variational Autoencoder
    Wei, Jie
    Zhang, Jingfa
    Xu, Yang
    Xu, Lidan
    Wu, Zebin
    Wei, Zhihui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Anomaly detection in facial skin temperature using variational autoencoder
    Ayaka Masaki
    Kent Nagumo
    Bikash Lamsal
    Kosuke Oiwa
    Akio Nozawa
    Artificial Life and Robotics, 2021, 26 : 122 - 128
  • [28] Echo-State Conditional Variational Autoencoder for Anomaly Detection
    Suh, Suwon
    Chae, Daniel H.
    Kang, Hyon-Goo
    Choi, Seungjin
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1015 - 1022
  • [29] Unsupervised Anomaly Detection in Rotating Machinery Using Variational Autoencoder
    Nomura Y.
    Yako H.
    Hattori H.
    Nakayama M.
    Zairyo/Journal of the Society of Materials Science, Japan, 2022, 71 (03): : 296 - 302
  • [30] Anomaly detection in facial skin temperature using variational autoencoder
    Masaki, Ayaka
    Nagumo, Kent
    Lamsal, Bikash
    Oiwa, Kosuke
    Nozawa, Akio
    ARTIFICIAL LIFE AND ROBOTICS, 2021, 26 (01) : 122 - 128