On the convergence of the modified Rosenau and the modified Benjamin-Bona-Mahony equations

被引:11
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, Via G Amendola 2, I-42122 Reggio Emilia, Italy
关键词
Singular limit; Compensated compactness; Modified Rosenau equation; Modified Benjamin-Bona-Mahony equation; Entropy condition; SOLITARY WAVE SOLUTIONS; SINGULAR LIMIT PROBLEM; CONSERVATION-LAWS; KDV; COLLOCATION; ENTROPY; SCHEME; MODEL;
D O I
10.1016/j.camwa.2016.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the modified Rosenau and the modified Benjamin-Bona-Mahony equations, which contain nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equations converge to entropy solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L-p setting.(C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:899 / 919
页数:21
相关论文
共 50 条
  • [41] Backward Controller of a Pullback Attractor for Delay Benjamin-Bona-Mahony Equations
    Qiangheng Zhang
    Yangrong Li
    Journal of Dynamical and Control Systems, 2020, 26 : 423 - 441
  • [42] On the Benjamin-Bona-Mahony Equation with a Localized Damping
    Rosier, Lionel
    JOURNAL OF MATHEMATICAL STUDY, 2016, 49 (02): : 195 - 204
  • [43] The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation
    Omrani, Khaled
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 180 (02) : 614 - 621
  • [44] Breather solutions of modified Benjamin–Bona–Mahony equation
    Adamashvili G.T.
    Chinese Physics B, 2021, 30 (02)
  • [45] Breather solutions of modified Benjamin–Bona–Mahony equation
    G T Adamashvili
    Chinese Physics B, 2021, (02) : 257 - 263
  • [46] Taylor wavelet collocation method for Benjamin-Bona-Mahony partial differential equations
    Shiralashetti, S. C.
    Hanaji, S., I
    RESULTS IN APPLIED MATHEMATICS, 2021, 9 (09):
  • [47] LIE SYMMETRY, CONVERGENCE ANALYSIS, EXPLICIT SOLUTIONS, AND CONSERVATION LAWS FOR THE TIME-FRACTIONAL MODIFIED BENJAMIN-BONA-MAHONY EQUATION
    Al-deiakeh, Rawya
    Alquran, Marwan
    Ali, Mohammed
    Qureshi, Sania
    Momani, Shaher
    Malkawi, Abed Al-Rahman
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2024, 23 (01) : 19 - 31
  • [48] Nonlocal Symmetries, Conservation Laws and Interaction Solutions of the Generalised Dispersive Modified Benjamin-Bona-Mahony Equation
    Yan, Xue-Wei
    Tian, Shou-Fu
    Dong, Min-Jie
    Wang, Xiu-Bin
    Zhang, Tian-Tian
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2018, 73 (05): : 399 - 405
  • [49] Global attractor for the damped Benjamin-Bona-Mahony equations on R1
    Zhu, Chaosheng
    APPLICABLE ANALYSIS, 2007, 86 (01) : 59 - 65
  • [50] Application of classification of traveling wave solutions to the modified benjamin-bona-mahony equation with power-law
    Li, W. H.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2016, 19 (03): : 707 - 714