On the convergence of the modified Rosenau and the modified Benjamin-Bona-Mahony equations

被引:11
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, Via G Amendola 2, I-42122 Reggio Emilia, Italy
关键词
Singular limit; Compensated compactness; Modified Rosenau equation; Modified Benjamin-Bona-Mahony equation; Entropy condition; SOLITARY WAVE SOLUTIONS; SINGULAR LIMIT PROBLEM; CONSERVATION-LAWS; KDV; COLLOCATION; ENTROPY; SCHEME; MODEL;
D O I
10.1016/j.camwa.2016.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the modified Rosenau and the modified Benjamin-Bona-Mahony equations, which contain nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equations converge to entropy solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L-p setting.(C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:899 / 919
页数:21
相关论文
共 50 条
  • [12] A new linearized method for Benjamin-Bona-Mahony equations
    Li, C
    Wu, XH
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (06) : 948 - 961
  • [13] Exact Solutions of the Nonlinear Modified Benjamin-Bona-Mahony Equation by an Analytical Method
    Alotaibi, Trad
    Althobaiti, Ali
    FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [14] EXISTENCE OF SOLUTIONS TO THE ROSENAU AND BENJAMIN-BONA-MAHONY EQUATION IN DOMAINS WITH MOVING BOUNDARY
    Barreto, Rioco K.
    De Caldas, Cruz S. Q.
    Gamboa, Pedro
    Limaco, Juan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2004,
  • [15] On the Convergence of Difference Schemes for Generalized Benjamin-Bona-Mahony Equation
    Berikelashvili, Givi
    Mirianashvili, Manana
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2014, 30 (01) : 301 - 320
  • [16] GENERALIZED VARIATIONAL PRINCIPLES FOR THE MODIFIED BENJAMIN-BONA-MAHONY EQUATION IN THE FRACTAL SPACE
    Cao, Xiao-Qun
    Xie, Si -Hang
    Leng, Hong-Ze
    Tian, Wen -Long
    Yao, Jia-Le
    THERMAL SCIENCE, 2024, 28 (3A): : 2341 - 2349
  • [17] On the convergence of difference schemes for the Benjamin-Bona-Mahony (BBM) equation
    Achouri, T.
    Khiari, N.
    Omrani, K.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (02) : 999 - 1005
  • [18] Unique continuation for the Benjamin-Bona-Mahony
    Davila, Mario
    Perla Menzala, Gustavo
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03): : 367 - 382
  • [19] STABILITY OF THE BENJAMIN-BONA-MAHONY WAVES
    MURAWSKI, K
    ANNALEN DER PHYSIK, 1989, 46 (06) : 401 - 407
  • [20] Quasi-doubly periodic solutions of the modified BenJamin-Bona-Mahony equation
    Abdel-Salam, E. A-B.
    Al-Muhiameed, Z. I. A.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 21 (J11): : 42 - 51