On the convergence of the modified Rosenau and the modified Benjamin-Bona-Mahony equations

被引:11
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, Via G Amendola 2, I-42122 Reggio Emilia, Italy
关键词
Singular limit; Compensated compactness; Modified Rosenau equation; Modified Benjamin-Bona-Mahony equation; Entropy condition; SOLITARY WAVE SOLUTIONS; SINGULAR LIMIT PROBLEM; CONSERVATION-LAWS; KDV; COLLOCATION; ENTROPY; SCHEME; MODEL;
D O I
10.1016/j.camwa.2016.02.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the modified Rosenau and the modified Benjamin-Bona-Mahony equations, which contain nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equations converge to entropy solutions of a scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L-p setting.(C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:899 / 919
页数:21
相关论文
共 50 条
  • [1] STABILITY FOR THE MODIFIED AND FOURTH-ORDER BENJAMIN-BONA-MAHONY EQUATIONS
    Pava, Jaime Angulo
    Banquet, Carlos
    Scialom, Marcia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 30 (03) : 851 - 871
  • [2] On equations of Benjamin-Bona-Mahony type
    Límaco, J
    Clark, HR
    Medeiros, LA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (08) : 1243 - 1265
  • [3] A note on convergence of the solutions of Benjamin-Bona-Mahony type equations
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 64 - 81
  • [4] The first integral method for modified Benjamin-Bona-Mahony equation
    Abbasbandy, S.
    Shirzadi, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (07) : 1759 - 1764
  • [5] New Exact Solutions of the Modified Benjamin-Bona-Mahony Equation
    Yang, Yun-jie
    Yao, Li
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTER SCIENCE (AICS 2016), 2016, : 113 - 118
  • [6] Asymptotic Attractors of Benjamin-Bona-Mahony Equations
    Zhu, Chaosheng
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2008, 1 (02): : 3 - 10
  • [7] Remarks on equations of Benjamin-Bona-Mahony type
    Limaco, J.
    Clark, H. R.
    Medeiros, L. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 328 (02) : 1117 - 1140
  • [8] Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Waheed, Asif
    Al-Said, Eisa A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (04) : 2126 - 2131
  • [9] Nonlinear wave solutions and their relations for the modified Benjamin-Bona-Mahony equation
    Song, Ming
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 431 - 446
  • [10] Benjamin-Bona-Mahony Equations with Memory and Rayleigh Friction
    Dell'Oro, Filippo
    Mammeri, Youcef
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (02): : 813 - 831