Arginine phosphorylation marks proteins for degradation by a Clp protease

被引:159
|
作者
Trentini, Debora Broch [1 ]
Suskiewicz, Marcin Jozef [1 ]
Heuck, Alexander [1 ]
Kurzbauer, Robert [1 ]
Deszcz, Luiza [1 ]
Mechtler, Karl [1 ,2 ]
Clausen, Tim [1 ]
机构
[1] Res Inst Mol Pathol IMP, Dr Bohr Gasse 7, A-1030 Vienna, Austria
[2] Austrian Acad Sci IMBA, Inst Mol Biotechnol, Dr Bohr Gasse 3, A-1030 Vienna, Austria
关键词
BACILLUS-SUBTILIS; ADAPTER PROTEIN; PEPTIDE IDENTIFICATION; TYROSINE KINASE; UBIQUITIN; CTSR; REGULATOR; EXPRESSION; BACTERIAL; SYSTEM;
D O I
10.1038/nature20122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.
引用
收藏
页码:48 / +
页数:19
相关论文
共 50 条
  • [41] Clp ATPases and their role in protein unfolding and degradation
    Hoskins, JR
    Sharma, S
    Sathyanarayana, BK
    Wickner, S
    PROTEIN FOLDING IN THE CELL, 2002, 59 : 413 - 429
  • [42] Organization, function and substrates of the essential Clp protease system in plastids
    Nishimura, Kenji
    van Wijk, Klaas J.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2015, 1847 (09): : 915 - 930
  • [43] Conformational control of the bacterial Clp protease by natural product antibiotics
    Malik, I. T.
    Broetz-Oesterhelt, H.
    NATURAL PRODUCT REPORTS, 2017, 34 (07) : 815 - 831
  • [44] ATP regulates the phosphorylation and degradation of myofibrillar proteins in ground ovine muscle
    REN Chi
    HOU Cheng-li
    ZHANG De-quan
    LI Xin
    XIAO Xiong
    BAI Yu-qiang
    JournalofIntegrativeAgriculture, 2021, 20 (01) : 311 - 318
  • [45] ATP regulates the phosphorylation and degradation of myofibrillar proteins in ground ovine muscle
    Ren Chi
    Hou Cheng-li
    Zhang De-quan
    Li Xin
    Xiao Xiong
    Bai Yu-qiang
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2021, 20 (01) : 311 - 318
  • [46] The ATP-dependent Clp protease of Escherichia coli: Sequence of clpA and identification of a Clp-specific substrate
    1600, American Society for Biochemistry and Molecular Biology Inc., Bethesda, United States (265):
  • [47] The ATP-dependent Clp protease in chloroplasts of higher plants
    Clarke, AK
    MacDonald, TM
    Sjögren, LLE
    PHYSIOLOGIA PLANTARUM, 2005, 123 (04) : 406 - 412
  • [48] Extreme variation in rates of evolution in the plastid Clp protease complex
    Williams, Alissa M.
    Friso, Giulia
    van Wijk, Klaas J.
    Sloan, Daniel B.
    PLANT JOURNAL, 2019, 98 (02): : 243 - 259
  • [49] Arginine Kinase Activates Arginine for Phosphorylation by Pyramidalization and Polarization
    Falcioni, Fabio
    Molt Jr, Robert W.
    Jin, Yi
    Waltho, Jonathan P.
    Hay, Sam
    Richards, Nigel G. J.
    Blackburn, G. Michael
    ACS CATALYSIS, 2024, 14 (09) : 6650 - 6658
  • [50] Protease Ti (Clp), a multi-component ATP-dependent protease in Escherichia coli
    Chung, CH
    Seol, JH
    Kang, MS
    BIOLOGICAL CHEMISTRY, 1996, 377 (09) : 549 - 554