Arginine phosphorylation marks proteins for degradation by a Clp protease

被引:159
|
作者
Trentini, Debora Broch [1 ]
Suskiewicz, Marcin Jozef [1 ]
Heuck, Alexander [1 ]
Kurzbauer, Robert [1 ]
Deszcz, Luiza [1 ]
Mechtler, Karl [1 ,2 ]
Clausen, Tim [1 ]
机构
[1] Res Inst Mol Pathol IMP, Dr Bohr Gasse 7, A-1030 Vienna, Austria
[2] Austrian Acad Sci IMBA, Inst Mol Biotechnol, Dr Bohr Gasse 3, A-1030 Vienna, Austria
关键词
BACILLUS-SUBTILIS; ADAPTER PROTEIN; PEPTIDE IDENTIFICATION; TYROSINE KINASE; UBIQUITIN; CTSR; REGULATOR; EXPRESSION; BACTERIAL; SYSTEM;
D O I
10.1038/nature20122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Protein turnover is a tightly controlled process that is crucial for the removal of aberrant polypeptides and for cellular signalling. Whereas ubiquitin marks eukaryotic proteins for proteasomal degradation, a general tagging system for the equivalent bacterial Clp proteases is not known. Here we describe the targeting mechanism of the ClpC-ClpP proteolytic complex from Bacillus subtilis. Quantitative affinity proteomics using a ClpP-trapping mutant show that proteins phosphorylated on arginine residues are selectively targeted to ClpC-ClpP. In vitro reconstitution experiments demonstrate that arginine phosphorylation by the McsB kinase is required and sufficient for the degradation of substrate proteins. The docking site for phosphoarginine is located in the amino-terminal domain of the ClpC ATPase, as resolved at high resolution in a co-crystal structure. Together, our data demonstrate that phosphoarginine functions as a bona fide degradation tag for the ClpC-ClpP protease. This system, which is widely distributed across Gram-positive bacteria, is functionally analogous to the eukaryotic ubiquitin-proteasome system.
引用
收藏
页码:48 / +
页数:19
相关论文
共 50 条
  • [31] Structural Switching of Staphylococcus aureus Clp Protease A KEY TO UNDERSTANDING PROTEASE DYNAMICS
    Zhang, Jie
    Ye, Fei
    Lan, Lefu
    Jiang, Hualiang
    Luo, Cheng
    Yang, Cai-Guang
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (43) : 37590 - 37601
  • [32] CLP PROTEASE AND POSTTRANSLATIONAL REGULATION OF CHLOROPLAST PROTEIN STABILITY
    ERDOS, G
    BUETOW, D
    PHOTOSYNTHESIS RESEARCH, 1992, 34 (01) : 180 - 180
  • [33] Identification of oxidized proteins in rat liver peroxisomes and degradation of the proteins by a peroxisomal protease.
    Imanaka, T
    Takano, T
    Nakamura, A
    Motojima, K
    Goto, S
    Kurochkin, I
    MOLECULAR BIOLOGY OF THE CELL, 1996, 7 : 2891 - 2891
  • [34] Contribution of the Clp Protease to Bacterial Survival and Mitochondrial Homoeostasis
    Illigmann, Astrid
    Thoma, Yvonne
    Pan, Stefan
    Reinhardt, Laura
    Broetz-Oesterhelt, Heike
    MICROBIAL PHYSIOLOGY, 2021, 31 (03): : 260 - 279
  • [35] Phosphorylation of mitochondrial matrix proteins regulates their selective mitophagic degradation
    Kolitsida, Panagiota
    Zhou, Jianwen
    Rackiewicz, Michal
    Nolic, Vladimir
    Dengjel, Joern
    Abeliovich, Hagai
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (41) : 20517 - 20527
  • [36] Assembly and dysregulation of the M. tuberculosis Clp protease
    Schmitz, Karl R.
    Amor, Alvaro J.
    Sello, Jason K.
    Sauer, Robert T.
    PROTEIN SCIENCE, 2016, 25 : 149 - 149
  • [37] NblA, a Key Protein of Phycobilisome Degradation, Interacts with ClpC, a HSP100 Chaperone Partner of a Cyanobacterial Clp Protease
    Karradt, Anne
    Sobanski, Johanna
    Mattow, Jens
    Lockau, Wolfgang
    Baier, Kerstin
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (47) : 32394 - 32403
  • [39] MODE OF DEGRADATION OF MYOFIBRILLAR PROTEINS BY AN ENDOGENOUS PROTEASE, CATHEPSIN-L
    MATSUKURA, U
    OKITANI, A
    NISHIMURO, T
    KATO, H
    BIOCHIMICA ET BIOPHYSICA ACTA, 1981, 662 (01) : 41 - 47
  • [40] Structural insights into the Clp protein degradation machinery
    Xu, Xiaolong
    Wang, Yanhui
    Huang, Wei
    Li, Danyang
    Deng, Zixin
    Long, Feng
    MBIO, 2024, 15 (04):