Distinguished nilpotent orbits, Kostant pairs and normalizers of Lie algebras

被引:2
|
作者
Sirola, Boris [1 ]
机构
[1] Univ Zagreb, Dept Math, Zagreb 10000, Croatia
关键词
Semisimple Lie algebra; Cartan subalgebra; Root; Root system; Borel subalgebra; Pair of Lie algebras; Kostant pair; Normalizer; Self-normalizing subalgebra; Nilpotent element; Distinguished nilpotent element; Nilpotent orbit; REDUCTIVE SUBALGEBRAS; UNIPOTENT ELEMENTS; SUBGROUPS; VARIETIES; MODULES;
D O I
10.1016/j.jalgebra.2014.10.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A pair of Lie algebras (g, g(1)) will be called a Kostant pair if g is semisimple, g is reductive in g and the restriction of the Killing form B-g to g(1) is nondegenerate. We study the class of such (nonsymmetric) pairs and obtain some useful and new structural results. We study the structure of the normalizers N-g(g(1)), and as a consequence we obtain some corresponding worthy results about algebraic groups. In particular we consider an interesting case when g(1) is a distinguished sl(2)-subalgebra of g. Combined with the research due to V.L. Popov we observe that the notions of self-normalizing (reductive) subalgebras of a semisimple Lie algebra and projective self-dual algebraic subvarieties of the usual nilpotent cones are closely related. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:636 / 682
页数:47
相关论文
共 50 条
  • [31] NILPOTENT LIE-ALGEBRAS
    CHAO, CY
    STITZINGER, EL
    ARCHIV DER MATHEMATIK, 1976, 27 (03) : 249 - 252
  • [32] Degenerations of nilpotent Lie algebras
    Burde, D
    JOURNAL OF LIE THEORY, 1999, 9 (01) : 193 - 202
  • [33] Gradings for Nilpotent Lie Algebras
    Hakavuori, Eero
    Kivioja, Ville
    Moisala, Terhi
    Tripaldi, Francesca
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 383 - 412
  • [34] CHARACTERISTICALLY NILPOTENT LIE ALGEBRAS
    LEGER, G
    TOGO, S
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) : 623 - 628
  • [35] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410
  • [36] CONTACT NILPOTENT LIE ALGEBRAS
    Alvarez, M. A.
    Rodriguez-Vallarte, M. C.
    Salgado, G.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1467 - 1474
  • [37] A class of nilpotent Lie algebras
    Cabezas, JM
    Camacho, LM
    Gómez, JR
    Navarro, RM
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (09) : 4489 - 4499
  • [38] Frattinian nilpotent Lie algebras
    Kianmehr, Mehri
    Saeedi, Farshid
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (03) : 1290 - 1296
  • [39] Dimensionally nilpotent lie algebras
    Eberlin, V
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (01) : 183 - 191
  • [40] Representations of nilpotent Lie algebras
    Rolf Farnsteiner
    Archiv der Mathematik, 1999, 72 : 28 - 39