CONTACT NILPOTENT LIE ALGEBRAS

被引:15
|
作者
Alvarez, M. A. [1 ]
Rodriguez-Vallarte, M. C. [2 ]
Salgado, G. [2 ]
机构
[1] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[2] UASLP, Fac Ciencias, Av Salvador Nava S-nZona Univ, San Luis Potosi 78290, Mexico
关键词
SUPERALGEBRAS;
D O I
10.1090/proc/13341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we show that for n >= 1, every finite (2n + 3)dimensional contact nilpotent Lie algebra g can be obtained as a double extension of a contact nilpotent Lie algebra h of codimension 2. As a consequence, for n >= 1, every (2n + 3)-dimensional contact nilpotent Lie algebra g can be obtained from the 3-dimensional Heisenberg Lie algebra h(3), by applying a finite number of successive series of double extensions. As a byproduct, we obtain an alternative proof of the fact that a (2n + 1)-nilpotent Lie algebra g is a contact Lie algebra if and only if it is a central extension of a nilpotent symplectic Lie algebra.
引用
收藏
页码:1467 / 1474
页数:8
相关论文
共 50 条
  • [1] COHOMOLOGY OF NILPOTENT LIE ALGEBRAS - APPLICATION TO STUDY OF VARIETY OF NILPOTENT LIE ALGEBRAS
    VERGNE, M
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1970, 98 (02): : 81 - &
  • [2] Free nilpotent and nilpotent quadratic Lie algebras
    Benito, P.
    de-la-Concepcion, D.
    Laliena, J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 296 - 326
  • [3] On nilpotent extensions of Lie algebras
    Yankosky, B
    HOUSTON JOURNAL OF MATHEMATICS, 2001, 27 (04): : 719 - 724
  • [4] Representations of nilpotent Lie algebras
    Farnsteiner, R
    ARCHIV DER MATHEMATIK, 1999, 72 (01) : 28 - 39
  • [5] NILPOTENT LIE-ALGEBRAS
    CHAO, CY
    STITZINGER, EL
    ARCHIV DER MATHEMATIK, 1976, 27 (03) : 249 - 252
  • [6] Degenerations of nilpotent Lie algebras
    Burde, D
    JOURNAL OF LIE THEORY, 1999, 9 (01) : 193 - 202
  • [7] Gradings for Nilpotent Lie Algebras
    Hakavuori, Eero
    Kivioja, Ville
    Moisala, Terhi
    Tripaldi, Francesca
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 383 - 412
  • [8] CHARACTERISTICALLY NILPOTENT LIE ALGEBRAS
    LEGER, G
    TOGO, S
    DUKE MATHEMATICAL JOURNAL, 1959, 26 (04) : 623 - 628
  • [9] NILPOTENT LIE AND LEIBNIZ ALGEBRAS
    Ray, Chelsie Batten
    Combs, Alexander
    Gin, Nicole
    Hedges, Allison
    Hird, J. T.
    Zack, Laurie
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (06) : 2404 - 2410
  • [10] A class of nilpotent Lie algebras
    Cabezas, JM
    Camacho, LM
    Gómez, JR
    Navarro, RM
    COMMUNICATIONS IN ALGEBRA, 2000, 28 (09) : 4489 - 4499