CONTACT NILPOTENT LIE ALGEBRAS

被引:15
|
作者
Alvarez, M. A. [1 ]
Rodriguez-Vallarte, M. C. [2 ]
Salgado, G. [2 ]
机构
[1] Univ Antofagasta, Dept Matemat, Antofagasta, Chile
[2] UASLP, Fac Ciencias, Av Salvador Nava S-nZona Univ, San Luis Potosi 78290, Mexico
关键词
SUPERALGEBRAS;
D O I
10.1090/proc/13341
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we show that for n >= 1, every finite (2n + 3)dimensional contact nilpotent Lie algebra g can be obtained as a double extension of a contact nilpotent Lie algebra h of codimension 2. As a consequence, for n >= 1, every (2n + 3)-dimensional contact nilpotent Lie algebra g can be obtained from the 3-dimensional Heisenberg Lie algebra h(3), by applying a finite number of successive series of double extensions. As a byproduct, we obtain an alternative proof of the fact that a (2n + 1)-nilpotent Lie algebra g is a contact Lie algebra if and only if it is a central extension of a nilpotent symplectic Lie algebra.
引用
收藏
页码:1467 / 1474
页数:8
相关论文
共 50 条