THE BELLOWS CONJECTURE FOR SMALL FLEXIBLE POLYHEDRA IN NON-EUCLIDEAN SPACES

被引:3
|
作者
Gaifullin, Alexander A. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Gubkina Str 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Flexible polyhedron; the bellows conjecture; simplicial collapse; analytic continuation; DIMENSIONS;
D O I
10.17323/1609-4514-2017-17-2-269-290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bellows conjecture claims that the volume of any flexible polyhedron of dimension 3 or higher is constant during the flexion. The bellows conjecture was proved for flexible polyhedra in Euclidean spaces R-n, n >= 3, and for bounded flexible polyhedra in odd-dimensional Lobachevsky spaces A(2m+1), m >= 1. Counterexamples to the bellows conjecture are known in all open hemispheres S-n, n >= 3. The aim of this paper is to prove that, nonetheless, the bellows conjecture is true for all flexible polyhedra in either S-n or A(n), n >= 3, with sufficiently small edge lengths.
引用
收藏
页码:269 / 290
页数:22
相关论文
共 50 条
  • [21] Rigid body dynamics in non-Euclidean spaces
    A. V. Borisov
    I. S. Mamaev
    Russian Journal of Mathematical Physics, 2016, 23 : 431 - 454
  • [22] Color Interpolation for Non-Euclidean Color Spaces
    Zeyen, Max
    Post, Tobias
    Hagen, Hans
    Ahrens, James
    Rogers, David
    Bujack, Roxana
    2018 IEEE SCIENTIFIC VISUALIZATION CONFERENCE (SCIVIS), 2018, : 11 - 15
  • [23] Beltrami and mathematical physics in non-Euclidean spaces
    Capecchi, Danilo
    Ruta, Giuseppe
    MECCANICA, 2016, 51 (04) : 747 - 762
  • [24] Antisphere: exploring non-Euclidean musical spaces
    Howard, Emily
    JOURNAL OF MATHEMATICS AND MUSIC, 2024, 18 (03) : 347 - 350
  • [25] Embedding non-Euclidean color spaces into Euclidean color spaces with minimal isometric disagreement
    Urban, Philipp
    Rosen, Mitchell R.
    Berns, Roy S.
    Schleicher, Dierk
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (06) : 1516 - 1528
  • [26] THE ASYMPTOTIC-DISTRIBUTION OF LATTICE POINTS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES
    LAX, PD
    PHILLIPS, RS
    JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (03) : 280 - 350
  • [28] Practical Estimation of Mutual Information on Non-Euclidean Spaces
    Miche, Yoan
    Oliver, Ian
    Ren, Wei
    Holtmanns, Silke
    Akusok, Anton
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 123 - 136
  • [29] Self-Organizing Maps on non-euclidean spaces
    Ritter, H
    KOHONEN MAPS, 1999, : 97 - 109
  • [30] HOMOGENEOUS SPACES ORIGINATED BY THE NON-EUCLIDEAN MOVEMENT GROUPS
    ZARIPOV, ES
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (03): : 85 - 87