Color Interpolation for Non-Euclidean Color Spaces

被引:0
|
作者
Zeyen, Max [1 ,2 ]
Post, Tobias [2 ]
Hagen, Hans [2 ]
Ahrens, James [1 ]
Rogers, David [1 ]
Bujack, Roxana [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Kaiserslautern, Kaiserslautern, Germany
关键词
Human-centered computing; Visualization; Visualization techniques; Treemaps; Visualization design and evaluation methods; DIFFERENCE FORMULA;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Color interpolation is critical to many applications across a variety of domains, like color mapping or image processing. Due to the characteristics of the human visual system, color spaces whose distance measure is designed to mimic perceptual color differences tend to be non-Euclidean. In this setting, a generalization of established interpolation schemes is not trivial. This paper presents an approach to generalize linear interpolation to colors for color spaces equipped with an arbitrary non-Euclidean distance measure. It makes use of the fact that in Euclidean spaces, a straight line coincides with the shortest path between two points. Additionally, we provide an interactive implementation of our method for the CIELAB color space using the CIEDE2000 distance measure integrated into VTK and ParaView.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [1] On large color differences in non-Euclidean color spaces
    Völz, HG
    MACROMOLECULAR SYMPOSIA, 2002, 187 : 953 - 958
  • [2] Embedding non-Euclidean color spaces into Euclidean color spaces with minimal isometric disagreement
    Urban, Philipp
    Rosen, Mitchell R.
    Berns, Roy S.
    Schleicher, Dierk
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (06) : 1516 - 1528
  • [3] Non-euclidean structure of spectral color space
    Lenz, R
    Meer, P
    POLARIZATION AND COLOR TECHNIQUES IN INDUSTRIAL INSPECTION, 1999, 3826 : 101 - 112
  • [4] Windows into non-Euclidean spaces
    Oxburgh, Stephen
    White, Chris D.
    Antoniou, Georgios
    Mertens, Lena
    Mullen, Christopher
    Ramsay, Jennifer
    McCall, Duncan
    Courtial, Johannes
    NOVEL OPTICAL SYSTEMS DESIGN AND OPTIMIZATION XVII, 2014, 9193
  • [5] On Distance Mapping from non-Euclidean Spaces to Euclidean Spaces
    Ren, Wei
    Miche, Yoan
    Oliver, Ian
    Holtmanns, Silke
    Bjork, Kaj-Mikael
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 3 - 13
  • [6] Neural networks in non-Euclidean spaces
    Duch, W
    Adamczak, R
    Diercksen, GHF
    NEURAL PROCESSING LETTERS, 1999, 10 (03) : 201 - 210
  • [7] Scaling and testing for non-Euclidean spaces
    Spencer-Smith, J
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL CONFERENCE OF THE COGNITIVE SCIENCE SOCIETY, 2000, : 1057 - 1057
  • [8] Function approximation on non-Euclidean spaces
    Courrieu, P
    NEURAL NETWORKS, 2005, 18 (01) : 91 - 102
  • [9] POLYHEDRON ALGEBRA IN NON-EUCLIDEAN SPACES
    JESSEN, B
    COMMENTARII MATHEMATICI HELVETICI, 1978, 53 (04) : 525 - 528
  • [10] Neural Networks in Non-Euclidean Spaces
    Włodzisław Duch
    Rafał Adamczak
    Geerd H.F. Diercksen
    Neural Processing Letters, 1999, 10 : 201 - 210