Color Interpolation for Non-Euclidean Color Spaces

被引:0
|
作者
Zeyen, Max [1 ,2 ]
Post, Tobias [2 ]
Hagen, Hans [2 ]
Ahrens, James [1 ]
Rogers, David [1 ]
Bujack, Roxana [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[2] Univ Kaiserslautern, Kaiserslautern, Germany
关键词
Human-centered computing; Visualization; Visualization techniques; Treemaps; Visualization design and evaluation methods; DIFFERENCE FORMULA;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Color interpolation is critical to many applications across a variety of domains, like color mapping or image processing. Due to the characteristics of the human visual system, color spaces whose distance measure is designed to mimic perceptual color differences tend to be non-Euclidean. In this setting, a generalization of established interpolation schemes is not trivial. This paper presents an approach to generalize linear interpolation to colors for color spaces equipped with an arbitrary non-Euclidean distance measure. It makes use of the fact that in Euclidean spaces, a straight line coincides with the shortest path between two points. Additionally, we provide an interactive implementation of our method for the CIELAB color space using the CIEDE2000 distance measure integrated into VTK and ParaView.
引用
收藏
页码:11 / 15
页数:5
相关论文
共 50 条
  • [21] Constructing euclidean color spaces based on color difference formulas
    Urban, Philipp
    Berns, Roy S.
    Rosen, Mitchell R.
    FIFTEENTH COLOR IMAGING CONFERENCE: COLOR SCIENCE AND ENGINEERING SYSTEMS, TECHNOLOGIES, AND APPLICATIONS, FINAL PROGRAM AND PROCEEDINGS, 2007, : 77 - 82
  • [22] NON-EUCLIDEAN MOTIONS IN PROJECTIVE MATRIX SPACES
    SCHWARZ, B
    ZAKS, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 137 : 351 - 361
  • [23] Rigid body dynamics in non-Euclidean spaces
    A. V. Borisov
    I. S. Mamaev
    Russian Journal of Mathematical Physics, 2016, 23 : 431 - 454
  • [24] Beltrami and mathematical physics in non-Euclidean spaces
    Capecchi, Danilo
    Ruta, Giuseppe
    MECCANICA, 2016, 51 (04) : 747 - 762
  • [25] Antisphere: exploring non-Euclidean musical spaces
    Howard, Emily
    JOURNAL OF MATHEMATICS AND MUSIC, 2024, 18 (03) : 347 - 350
  • [26] THE ASYMPTOTIC-DISTRIBUTION OF LATTICE POINTS IN EUCLIDEAN AND NON-EUCLIDEAN SPACES
    LAX, PD
    PHILLIPS, RS
    JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (03) : 280 - 350
  • [28] Practical Estimation of Mutual Information on Non-Euclidean Spaces
    Miche, Yoan
    Oliver, Ian
    Ren, Wei
    Holtmanns, Silke
    Akusok, Anton
    Lendasse, Amaury
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, CD-MAKE 2017, 2017, 10410 : 123 - 136
  • [29] Self-Organizing Maps on non-euclidean spaces
    Ritter, H
    KOHONEN MAPS, 1999, : 97 - 109
  • [30] Volumes of Polyhedra in Non-Euclidean Spaces of Constant Curvature
    Krasnov V.A.
    Journal of Mathematical Sciences, 2022, 267 (5) : 554 - 670