On the Diophantine Equation 22nx - py = z2, where p is a prime

被引:0
|
作者
Orosram, Wachirarak [1 ]
Unchai, Ariya [2 ]
机构
[1] Buriram Rajabhat Univ, Fac Sci, Dept Math, Buriram 31000, Thailand
[2] Triamudomsuksa Pattakarn UbonRatchathani Sch, Dept Math, UbonRatchathani Sch 34000, Thailand
关键词
Diophantine equation; Catalan's conjecture;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Diophantine equation 2(2nx) - p(y) = z(2), where n is a positive integer and p is a prime number. For p = 2, we find the set of all solutions in non-negative integers x, y and z given by {(x, y, z)} = {(0, 0, 0)} boolean OR {(t, 2nt, 0)}. For p an odd prime number, we find the set of all solutions in non-negative integers x, y and z given by {(x, y, z)} = {(0, 0, 0)} boolean OR {(q-1/n, 1, 2(q-1) - 1)} for prime p = 2(q)1, where q is also a prime number. For p equivalent to 3(mod4) not of the form 2(q)1, we only have the trivial solution (x, y, z) = (0,0, 0).
引用
收藏
页码:447 / 451
页数:5
相关论文
共 50 条
  • [21] On the Exponential Diophantine equation 11x- 17y =z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 181 - 184
  • [22] On the Diophantine Equation (2x-1)(py-1)=2z2
    Tong, Ruizhou
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) : 689 - 696
  • [23] On the Diophantine equation X2N+22α52βp2γ = Z5
    Goedhart, Eva G.
    Grundman, Helen G.
    PERIODICA MATHEMATICA HUNGARICA, 2017, 75 (02) : 196 - 200
  • [24] 关于Diophantine方程ax+by=z2
    苏娟丽
    数学的实践与认识, 2014, 44 (08) : 284 - 286
  • [26] All Solutions of the Diophantine Equation 25x - 7y = z2
    Siraworakun, Apirat
    Tadee, Suton
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (03): : 631 - 633
  • [27] On the Diophantine equation 2s+p k = m 2 with a Fermat prime p
    Luca, Florian
    Pink, Istvan
    JOURNAL OF NUMBER THEORY, 2025, 268 : 49 - 71
  • [28] On the Diophantine Equations qx + p(2q + 1)y = z2 and qx
    Phosri, Piyada
    Tadee, Suton
    THAI JOURNAL OF MATHEMATICS, 2024, 22 (02): : 389 - 395
  • [29] SOLVABILITY OF THE DIOPHANTINE EQUATION X4+KX2Y2+Y4=Z2
    ZHENG, DX
    KEXUE TONGBAO, 1988, 33 (09): : 712 - 714
  • [30] THE EXPONENTIAL DIOPHANTINE EQUATION nx + (n+1)y = (n+2)z REVISITED
    He, Bo
    Togbe, Alain
    GLASGOW MATHEMATICAL JOURNAL, 2009, 51 : 659 - 667