On the Diophantine Equations qx + p(2q + 1)y = z2 and qx

被引:0
|
作者
Phosri, Piyada [1 ]
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Fac Sci & Technol, Dept Math, Lopburi 15000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2024年 / 22卷 / 02期
关键词
Diophantine equation; Legendre symbol; congruence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using basic concepts of number theory, we present some conditions of the non-existence of non-negative integer solutions (x, y, z) for the Diophantine equations q(x) + p(2q + 1)(y) = z(2) and q(x) + p (4q + 1)(y) = z(2), where p and q are prime numbers.
引用
收藏
页码:389 / 395
页数:7
相关论文
共 50 条
  • [1] On the Diophantine Equations (p +a)x -py =z2 and px- (p +a)y =z2
    Tadee, Suton
    Wannaphan, Chantana
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (02): : 459 - 465
  • [2] The diophantine equation x4+y4=z2 in Q(√-2)
    Szabó, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (09): : 857 - 861
  • [3] On certain Diophantine equations of the form z2 = f(x)2 ± g(y)2
    Tengely, Sz
    Ulas, M.
    JOURNAL OF NUMBER THEORY, 2017, 174 : 239 - 257
  • [4] On the Diophantine equations z2 = f(x)2 ± f(x) f(y)
    Tang, Qiongzhi
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2021, 27 (02) : 88 - 100
  • [5] Rational solutions of the Diophantine equations f (x)2 ± f (y)2 = z2
    Youmbai, Ahmed El Amine
    Behloul, Djilali
    PERIODICA MATHEMATICA HUNGARICA, 2019, 79 (02) : 255 - 260
  • [6] On the integer solutions of the Diophantine equations z2 = f(x)2 ± f(y)2
    Zhang, Yong
    Tang, Qiongzhi
    PERIODICA MATHEMATICA HUNGARICA, 2022, 85 (02) : 369 - 379
  • [7] On Diophantine Equations 2x ± (2kp)y = z2 and-2x + (2k3)y = z2
    Li, Yuan
    Lloyd, Torre
    Clinton, Angel
    MATHEMATICS, 2024, 12 (24)
  • [8] ON THE QX + 1 PROBLEM, Q ODD .2.
    STEINER, R
    FIBONACCI QUARTERLY, 1981, 19 (04): : 293 - 296
  • [9] THE SIMULTANEOUS DIOPHANTINE EQUATIONS 5Y2-20=X2 AND 2Y2+1=Z2
    MOHANTY, SP
    RAMASAMY, AMS
    JOURNAL OF NUMBER THEORY, 1984, 18 (03) : 356 - 359
  • [10] Diophantine方程ax+(a+1)y=z2
    朱敏慧
    崔艳
    牟全武
    纺织高校基础科学学报, 2015, 28 (04) : 391 - 394