On the Diophantine Equations qx + p(2q + 1)y = z2 and qx

被引:0
|
作者
Phosri, Piyada [1 ]
Tadee, Suton [1 ]
机构
[1] Thepsatri Rajabhat Univ, Fac Sci & Technol, Dept Math, Lopburi 15000, Thailand
来源
THAI JOURNAL OF MATHEMATICS | 2024年 / 22卷 / 02期
关键词
Diophantine equation; Legendre symbol; congruence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, by using basic concepts of number theory, we present some conditions of the non-existence of non-negative integer solutions (x, y, z) for the Diophantine equations q(x) + p(2q + 1)(y) = z(2) and q(x) + p (4q + 1)(y) = z(2), where p and q are prime numbers.
引用
收藏
页码:389 / 395
页数:7
相关论文
共 50 条
  • [31] On the Classical Diophantine Equation x4 + y4 + kx2y2 = z2
    Stoenchev, Miroslav
    Todorov, Venelin
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE20), 2021, 2333
  • [32] F(Z,1 ,Z2 ) plus A(Z1 ,Z2 )G(Z1 ,Z2 ) equals H(Z1 ,Z2 )..
    Lai, Yhean-Sen
    IEEE transactions on circuits and systems, 1986, CAS-33 (05): : 542 - 544
  • [33] 关于Pell方程qx2-(qn±3)y2=±1(q≡±1(mod6)是素数)
    万飞
    杜先存
    文山学院学报, 2012, 25 (06) : 47 - 48+57
  • [34] On the Exponential Diophantine equation 5x - 3y = z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 99 - 102
  • [35] On the Exponential Diophantine equation 11x- 17y =z2
    Thongnak, Sutthiwat
    Kaewong, Theeradach
    Chuayjan, Wariam
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (01): : 181 - 184
  • [36] On the diophantine equation yx-xy=z2
    Le, Maohua
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2007, 37 (04) : 1181 - 1185
  • [37] 关于Diophantine方程ax+by=z2
    苏娟丽
    数学的实践与认识, 2014, 44 (08) : 284 - 286
  • [38] (|z1±z2|)2=(|z1|)2+(|z2|)2±2×|z1|×|z2|×cos(θ1-θ2)的应用
    胡晓苹
    中学数学, 1993, (04) : 19 - 22
  • [39] 关于Pell方程qx2-(qn±5)y2=±1(q≡±1,±3(mod10)是素数)
    李国蓉
    高丽
    江西科学, 2016, 34 (04) : 511 - 513
  • [40] THE SOLUTION OF THE TWO-DIMENSIONAL POLYNOMIAL EQUATION B(Z1,Z2)F(Z1,Z2)+A(Z1,Z2)G(Z1,Z2)=H(Z1,Z2)
    LAI, YS
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (05): : 542 - 544