On volume-preserving crystalline mean curvature flow

被引:3
|
作者
Kim, Inwon [1 ]
Kwon, Dohyun [2 ]
Pozar, Norbert [3 ]
机构
[1] UCLA, Dept Math, Los Angeles, CA 90024 USA
[2] Univ Wisconsin, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
[3] Kanazawa Univ, Fac Math & Phys, Inst Sci & Engn, Kanazawa, Ishikawa 9201192, Japan
关键词
IMPLICIT TIME DISCRETIZATION; LEVEL SETS; MOTION; EXISTENCE; UNIQUENESS;
D O I
10.1007/s00208-021-02286-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we consider the global existence of volume-preserving crystalline curvature flowin a non-convex setting. We showthat a natural geometric property, associated with reflection symmetries of the Wulff shape, is preserved with the flow. Using this geometric property, we address global existence and regularity of the flow for smooth anisotropies. For the non-smooth case we establish global existence results for the types of anisotropies known to be globally well-posed.
引用
收藏
页码:733 / 774
页数:42
相关论文
共 50 条
  • [21] Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow
    Zhu, Yecheng
    Fang, Yi
    Chen, Qing
    SCIENCE CHINA-MATHEMATICS, 2018, 61 (05) : 929 - 942
  • [22] Weak-strong uniqueness for volume-preserving mean curvature flow
    Laux, Tim
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) : 93 - 110
  • [23] CLASSIFICATION AND RIGIDITY OF λ-HYPERSURFACES IN THE WEIGHTED VOLUME-PRESERVING MEAN CURVATURE FLOW
    Zhu, Yecheng
    Chen, Qing
    HOUSTON JOURNAL OF MATHEMATICS, 2019, 45 (04): : 1037 - 1053
  • [24] Volume-preserving mean curvature flow of revolution hypersurfaces in a Rotationally Symmetric Space
    Esther Cabezas-Rivas
    Vicente Miquel
    Mathematische Zeitschrift, 2009, 261 : 489 - 510
  • [25] A simple scheme for volume-preserving motion by mean curvature
    Ruuth, SJ
    Wetton, BTR
    JOURNAL OF SCIENTIFIC COMPUTING, 2003, 19 (1-3) : 373 - 384
  • [26] Stability of the surface diffusion flow and volume-preserving mean curvature flow in the flat torus
    De Gennaro, Daniele
    Diana, Antonia
    Kubin, Andrea
    Kubin, Anna
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 4429 - 4461
  • [27] A Simple Scheme for Volume-Preserving Motion by Mean Curvature
    Steven J. Ruuth
    Brian T. R. Wetton
    Journal of Scientific Computing, 2003, 19 : 373 - 384
  • [28] Volume-preserving mean curvature flow of revolution hypersurfaces in a Rotationally Symmetric Space
    Cabezas-Rivas, Esther
    Miquel, Vicente
    MATHEMATISCHE ZEITSCHRIFT, 2009, 261 (03) : 489 - 510
  • [29] Volume-preserving flow by powers of the m-th mean curvature in the hyperbolic space
    Guo, Shunzi
    Li, Guanghan
    Wu, Chuanxi
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2017, 25 (02) : 321 - 372
  • [30] Stability of spherical caps under the volume-preserving mean curvature flow with line tension
    Abels, Helmut
    Garcke, Harald
    Mueller, Lars
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 117 : 8 - 37