Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes

被引:85
|
作者
Eymard, R [1 ]
Gallouet, T
Ghilani, M
Herbin, R
机构
[1] Lab Cent Ponts & Chaussees, F-75732 Paris, France
[2] Univ Paris 13, F-75732 Paris, France
[3] Ecole Normale Super Lyon, F-69364 Lyon, France
[4] Univ Moulay Ismail, Fac Sci, Meknes, Morocco
[5] Univ Aix Marseille 1, CMI, F-13453 Marseille, France
关键词
D O I
10.1093/imanum/18.4.563
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of an error estimate of the finite volume approximation to the solution u is an element of L-infinity (R-N x R) of the equation u(t) + div(vf(u)) = 0, where v is a vector function depending on time and space. A 'h(1/4)' error estimate for an initial value in BV(R-N) is shown for a large variety of finite volume monotonous flux schemes, with an explicit or implicit time discretization. For this purpose, the error estimate is given for the general setting of approximate entropy solutions, where the error is expressed in terms of measures in R-N and R-N x R. The study of the implicit schemes involves the study of the existence and uniqueness of the approximate solution. The cases where an 'h(1/2)' error estimate can be achieved are also discussed.
引用
收藏
页码:563 / 594
页数:32
相关论文
共 50 条
  • [11] A posteriori error estimators for finite volume schemes for a nonlinear problem
    Bergam, A
    Mghazli, Z
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (06): : 475 - 478
  • [12] Weak Convergence of Nonlinear Finite Volume Schemes for Linear Hyperbolic Systems
    Ndjinga, Michael
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS, 2014, 77 : 411 - 419
  • [13] Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
    Felix Finster
    Joel Smoller
    Archive for Rational Mechanics and Analysis, 2010, 197 : 985 - 1009
  • [14] Error Estimates for Approximate Solutions of the Riccati Equation with Real or Complex Potentials
    Finster, Felix
    Smoller, Joel
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (03) : 985 - 1009
  • [15] Strong convergence of approximate solutions for nonlinear hyperbolic equation without convexity
    Cheng, Zhixin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 558 - 568
  • [16] Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
    Philippe G. LeFloch
    Baver Okutmustur
    Wladimir Neves
    Acta Mathematica Sinica, English Series, 2009, 25 : 1041 - 1066
  • [17] Hyperbolic Conservation Laws on Manifolds.An Error Estimate for Finite Volume Schemes
    Philippe G.LeFLOCH
    Baver OKUTMUSTUR
    Wladimir NEVES
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (07) : 5 - 5
  • [18] Hyperbolic conservation laws on manifolds. An error estimate for finite volume schemes
    LeFloch, Philippe G.
    Okutmustur, Baver
    Neves, Wladimir
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (07) : 1041 - 1066
  • [19] Approximate solutions of the hyperbolic Kepler equation
    Avendano, Martin
    Martin-Molina, Veronica
    Ortigas-Galindo, Jorge
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 123 (04): : 435 - 451
  • [20] Approximate solutions of the hyperbolic Kepler equation
    Martín Avendano
    Verónica Martín-Molina
    Jorge Ortigas-Galindo
    Celestial Mechanics and Dynamical Astronomy, 2015, 123 : 435 - 451