Approximate solutions of the hyperbolic Kepler equation

被引:0
|
作者
Martín Avendano
Verónica Martín-Molina
Jorge Ortigas-Galindo
机构
[1] Centro Universitario de la Defensa,IUMA
[2] Academia General Militar,Departamento de Didáctica de las Matemáticas, Facultad de Ciencias de la Educación
[3] Universidad de Zaragoza,undefined
[4] Universidad de Sevilla,undefined
[5] Instituto de Educación Secundaria Élaios,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2015年 / 123卷
关键词
Hyperbolic Kepler’s equation; Newton’s method; Smale’s ; -theory; Optimal starter;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an approximate zero S~(g,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{S}(g,L)$$\end{document} for the hyperbolic Kepler’s equation S-garcsinh(S)-L=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S-g\,{{\mathrm{arcsinh}}}(S)-L=0$$\end{document} for g∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in (0,1)$$\end{document} and L∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in [0,\infty )$$\end{document}. We prove, by using Smale’s α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-theory, that Newton’s method starting at our approximate zero produces a sequence that converges to the actual solution S(g, L) at quadratic speed, i.e. if Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} is the value obtained after n iterations, then |Sn-S|≤0.52n-1|S~-S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S_n-S|\le 0.5^{2^n-1}|\widetilde{S}-S|$$\end{document}. The approximate zero S~(g,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{S}(g,L)$$\end{document} is a piecewise-defined function involving several linear expressions and one with cubic and square roots. In bounded regions of (0,1)×[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,1) \times [0,\infty )$$\end{document} that exclude a small neighborhood of g=1,L=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=1, L=0$$\end{document}, we also provide a method to construct simpler starters involving only constants.
引用
收藏
页码:435 / 451
页数:16
相关论文
共 50 条
  • [1] Approximate solutions of the hyperbolic Kepler equation
    Avendano, Martin
    Martin-Molina, Veronica
    Ortigas-Galindo, Jorge
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2015, 123 (04): : 435 - 451
  • [2] Approximate symmetries and solutions of the hyperbolic heat equation
    Diatta, B.
    Soh, C. Wafo
    Khalique, C. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 205 (01) : 263 - 272
  • [3] ON APPROXIMATE SOLUTIONS OF A CERTAIN HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION
    Pachpatte, B. G.
    TAMKANG JOURNAL OF MATHEMATICS, 2011, 42 (01): : 95 - 104
  • [4] THE HYPERBOLIC KEPLER EQUATION (AND THE ELLIPTIC EQUATION REVISITED)
    Gooding, R. H.
    Odell, A. W.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1988, 44 (03): : 267 - 282
  • [5] Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential
    Arda, Altug
    Sever, Ramazan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2015, 64 (03) : 269 - 273
  • [6] Approximate Solutions of Dirac Equation with Hyperbolic-Type Potential
    Altug Arda
    Ramazan Sever
    Communications in Theoretical Physics, 2015, 64 (09) : 269 - 273
  • [7] Strong convergence of approximate solutions for nonlinear hyperbolic equation without convexity
    Cheng, Zhixin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 340 (01) : 558 - 568
  • [8] A new method for solving the hyperbolic Kepler equation
    Wu, Baisheng
    Zhou, Yixin
    Lim, C. W.
    Zhong, Huixiang
    Chen, Zeyao
    APPLIED MATHEMATICAL MODELLING, 2024, 127 : 432 - 438
  • [9] INVERSE SOLUTION OF KEPLER EQUATION FOR HYPERBOLIC ORBITS
    BOLTZ, FW
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 1987, 35 (03): : 347 - 358
  • [10] On the integral solution of hyperbolic Kepler’s equation
    M. Calvo
    A. Elipe
    L. Rández
    Celestial Mechanics and Dynamical Astronomy, 2024, 136