A novel bearing fault diagnosis method using deep residual learning network

被引:23
|
作者
Ayas, Selen [1 ]
Ayas, Mustafa Sinasi [2 ]
机构
[1] Karadeniz Tech Univ, Dept Comp Engn, TR-61080 Trabzon, Turkey
[2] Karadeniz Tech Univ, Dept Elect & Elect Engn, TR-61080 Trabzon, Turkey
关键词
Convolutional neural networks; CWRU bearing dataset; Deep residual network; Fault diagnosis; Motor bearing; NEURAL-NETWORK;
D O I
10.1007/s11042-021-11617-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing fault diagnosis is a serious problem on which researchers have focused to ensure the reliability and availability of rotating machinery. Knowledge-based methods are capable of providing promising solution to bearing diagnosis problem with high accuracy performance thanks to effectively processing collected sensor and actuator data. Deep learning (DL) has the advantage of ignoring feature extraction and providing accurate diagnosis among the machine learning algorithms. In order to address this issue, in this paper, a novel DL based model is presented for fault detection and classification of motor bearing. In this work, first, time domain signals are converted to images by a proposed signal-toimage conversion approach. Then, the converted gray-scale images are fed into a novel deep residual learning (DRL) network structured to learn end-to-end mapping between images and health condition of the motor bearing. The performance of the proposed DRL network is evaluated on a commonly used real vibration dataset provided by Case Western Reserve University (CWRU). Experimental results obtained for 10 different health condition demonstrate encouraging and outperforming performance with an average accuracy of 99.98% compared to the state-of-art knowledge-based bearing fault diagnosis methods.
引用
收藏
页码:22407 / 22423
页数:17
相关论文
共 50 条
  • [31] Electric Locomotive Bearing Fault Diagnosis Using a Novel Convolutional Deep Belief Network
    Shao, Haidong
    Jiang, Hongkai
    Zhang, Haizhou
    Liang, Tianchen
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (03) : 2727 - 2736
  • [32] A deep learning model for bearing fault diagnosis based on convolution neural network with multi-channel and residual network
    Tuo, Jianyong
    Hu, Yu
    Ma, Xin
    Wang, Youqing
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 1278 - 1283
  • [33] Bearing fault diagnosis by combining a deep residual shrinkage network and bidirectional LSTM
    Tong, Yizhi
    Wu, Ping
    He, Jiajun
    Zhang, Xujie
    Zhao, Xinlong
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (03)
  • [34] A Bearing Fault Diagnosis Method Using Multi-Branch Deep Neural Network
    Nguyen, Van-Cuong
    Hoang, Duy-Tang
    Tran, Xuan-Toa
    Van, Mien
    Kang, Hee-Jun
    MACHINES, 2021, 9 (12)
  • [35] TRANSFER LEARNING ROLLING BEARING FAULT DIAGNOSIS METHOD BASED ON DEEP DOMAIN ADAPTIVE NETWORK
    Liao, Yu
    Geng, Jiahao
    Guo, Li
    Geng, Bing
    Cui, Kun
    Li, Runze
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2025, 21 (01): : 209 - 225
  • [36] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321
  • [37] Fault diagnosis of bearing using Deep Neural Network with Dropconnect
    Lee, Jongkyu
    Lee, Donghee
    Kim, Byeongwoo
    PROCEEDINGS OF THE 2019 IEEE EURASIA CONFERENCE ON IOT, COMMUNICATION AND ENGINEERING (ECICE), 2019, : 530 - 533
  • [38] Fault diagnosis of rolling bearing using a transfer ensemble deep reinforcement learning method
    Li, Zhenning
    Jiang, Hongkai
    Liu, Shaowei
    Wang, Ruixin
    2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 205 - 211
  • [39] Intelligent Deep Adversarial Network Fault Diagnosis Method Using Semisupervised Learning
    Xu, Juan
    Shi, Yongfang
    Shi, Lei
    Ren, Zihui
    Lu, Yang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [40] Fault diagnosis method of rolling bearing based on deep belief network
    Shang, Zhiwu
    Liao, Xiangxiang
    Geng, Rui
    Gao, Maosheng
    Liu, Xia
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (11) : 5139 - 5145